Advances in serviceability and strength of normal- and high-strength concrete structures

2006 ◽  
Vol 8 (4) ◽  
pp. 133-142
Author(s):  
Yew-Chaye Loo ◽  
Sanaul Huq Chowdhury
2009 ◽  
Vol 36 (4) ◽  
pp. 565-579 ◽  
Author(s):  
Patrick Paultre ◽  
Denis Mitchell

This paper presents the background experimental and analytical research that was carried out to develop the provisions for the seismic design of high-strength concrete structures in the 2004 Canadian standard CSA A23.3–04. It is noted that the 1994 Canadian standard CSA A23.3–94 limited the concrete compressive strength to 55 MPa for the seismic design of nominally ductile and ductile structures, while the 1995 New Zealand Standard limited the concrete compressive strength to 70 MPa. In contrast, the 2008 American Concrete Institute (ACI) code ACI 318M has no upper limit on concrete strength, even for the seismic design of ductile structural elements. This tremendous variation in these limits indicated that more experimental evidence was needed. This paper presents experimental results of reversed cyclic loading tests on large-scale structural components as well as simulated seismic loading tests of a frame structure constructed with high-strength concrete. The goal of this collaborative research program at the University of Sherbrooke and McGill University was to determine the seismic design and detailing requirements for high-strength concrete structures to achieve the desired level of ductility and energy dissipation. The experimental programs include full-scale testing of the following: columns subjected to a pure axial load (square and circular columns); columns subjected to flexure and axial loads; beam-column subassemblages (square and circular columns); coupling beams in coupled wall structures; shear walls and a two-storey, three-dimensional frame structure. The results of the responses of the high-strength concrete structural specimens are compared with the responses of companion specimens constructed with normal-strength concrete.


SCC and FRC may be classified as superior Concrete because of its special proportions and properties. HPC may be a specialized concrete designed top reduce many edges within the construction of concrete structures that can't continually be achieved habitually mistreatment standard ingredients, traditional mixture & hardening practices. Fibres into SCC will produce FRSCC with superior properties in a fresh and hardened state. The bolstered fibres in concrete might improve the durability, flexural strength, impact strength, toughness, drying shrinkage, and failure pattern of the concrete.


2002 ◽  
Vol 8 (16) ◽  
pp. 41-44
Author(s):  
Tohru SHINOZAKI ◽  
Kazutoshi FUJII ◽  
Hiroshi JITOSONO ◽  
Kazuhiro WATANABE ◽  
Torao KEMI ◽  
...  

2017 ◽  
Vol 28 (17) ◽  
pp. 2428-2436 ◽  
Author(s):  
Haibin Zhang ◽  
Shuang Hou ◽  
Jinping Ou

Piezoelectric-based seismic stress monitoring provides an innovative approach to assessing the health of concrete structures during earthquakes. In this research, we evaluate the application of piezoelectric-based smart aggregate (SA) sensors for monitoring the seismic stress on high-strength concrete columns. The principle behind using smart aggregates for seismic stress monitoring is based on the assumption that concrete stress can be reliably predicted by the average output voltages of a limited number of embedded smart aggregates within an acceptable margin of error. This experiment is designed to evaluate the effects of meso-scale randomness on high-strength concrete and the effects of different loading paths on the proposed smart aggregate. Loading–unloading loops of increasing amplitude at the nonlinear stage and monotonic loading to failure were carried out on four high-strength concrete cylinders. Each specimen had six smart aggregates embedded. A statistical analysis based on the test results determined the sensitivity curve during the loading–unloading and the full-range damage processes. Monitoring errors of concrete stress monitored by smart aggregate during the pre- and post-peak stages were also discussed. The research concludes that there is the potential for deploying smart aggregate in engineering applications to monitor seismic stress on high-strength concrete structures.


2020 ◽  
Vol 20 (6) ◽  
pp. 15-21
Author(s):  
Bohoon Sim ◽  
Kukjoo Kim ◽  
Chunho Kim ◽  
Sang-woo Park ◽  
Jang-woon Baek ◽  
...  

Blast loading varies based on the location of the explosion. Furthermore, blast loading can be classified into unconfined explosions and confined explosions. Many studies have evaluated blast resistance performance based on unconfined explosions, focusing on military applications. However, there is a paucity of studies considering confined explosions. Given that confined explosions are significantly different from unconfined explosions, full-scale field experiments are necessary for the development of numerical models. Therefore, in this study, the performance of blast resistance panels was evaluated as a method for reducing explosion pressure in facilities such as underground ammunition storage. Two structures were manufactured using normal-strength and high-strength concrete, and 5.9 kg of TNT was blasted internally. The experimental results confirmed that the maximum acceleration could be reduced by 28.87% and 61.65% in the normal-strength and high-strength concrete structures, respectively, when using a blast resistance panel.


2011 ◽  
Vol 250-253 ◽  
pp. 2202-2205
Author(s):  
Hong Hai ◽  
Li Sun ◽  
Ying Hua Zhao

Fatigue damage becomes an emerging problem in lots of concrete structures which will subject to cyclic loadings during their working life. This paper presents a study on interfacial shear fatigue performance of a high-strength concrete structure strengthened by carbon fiber-reinforced plastic (CFRP) plate, which has been established as an effective method for rehabilitation and strengthening of concrete structures. Based on the static test, a new experimental investigation of the shear fatigue performance along the concrete-plate interface under the low cycle fatigue load in the condition of R=0.1 is presented. The main variable is the concrete strength. Compared with the static ultimate strength, fatigue strength decreases. Therefore, a safety factor of the fatigue strength at the interface of CFRP and concrete should be applied in design.


Sign in / Sign up

Export Citation Format

Share Document