Photoluminescence Evolution with Deposition Thickness of Ge Nanostructures Embedded in GaSb

Author(s):  
Cheng Dou ◽  
Xiren Chen ◽  
Qimiao Chen ◽  
Yuxin Song ◽  
Nan Ma ◽  
...  
Keyword(s):  
Author(s):  
Zhenxia Liu ◽  
Fei Zhang ◽  
Zhengang Liu

The deposition of liquid particles, which may be converted from solid particles due to high temperature gas heating, makes much more harm on turbine vane blades compared to solid particles, since it may block film-cooling holes, worsen the cooling efficiency and aerodynamic performance of the turbine vane blades. Due to the similarity between the deposition of liquid particles on a surface and the icing on a surface, a numerical model for simulating particles deposition was developed based on the Myers icing model, an extension of the Messinger model, which has been applied in predicting aircraft icing or aero-engine icing. Compared to the conventional liquid particle deposition model, the numerical model in this paper considers the heat transfer and the flow of liquid particles during the particles phase transition from liquid state to solid state. In this model, the change of the surface profile due to the particles deposition was also considered, which was implemented with dynamic mesh technique. To test this model, deposition distribution and thickness obtained from the numerical simulations were compared to the experimental results. Additionally, a numerical simulation was conducted for liquid particle deposition on a flat plate. The result showed that the deposition thickness at the leading edge was much larger than that on the upper surface where the deposition appeared mainly at the middle and rear of the plate. The deposition mass and thickness increased with the increasing in the particle size. The effect of the particle size on the deposition thickness was more notable on the upper surface compared to that at the leading edge.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Kun-Ting Chen ◽  
Xiao-Qing Chen ◽  
Gui-Sheng Hu ◽  
Yu-Shu Kuo ◽  
Yan-Rong Huang ◽  
...  

In this study, we develop a dimensionless assessment method to evaluate landslide dam formation by considering the relationship between the run-out distance of a tributary debris flow and the width of the main stream, deposition thickness of the tributary debris flow, and the water depth of the main stream. Based on the theory of debris flow run-out distance and fan formation, landslide dam formation may result from a tributary debris flow as a result of two concurrent formation processes: (1) the run-out distance of the tributary debris flow must be greater than the width of the main stream, and (2) the minimum deposition thickness of the tributary debris flow must be higher than the in situ water depth of the main stream. At the confluence, one of four types of depositional scenarios may result: (1) the tributary debris flow enters into the main stream and forms a landslide dam; (2) the tributary debris flow enters into the main stream but overflow occurs, thus preventing complete blockage of the main stream; (3) the tributary debris flow enters into the main stream, does not reach the far bank, and sediment remains partially above the water elevation of the main stream; or (4) the tributary debris flow enters into the main stream, does not reach the far bank, and sediment is fully submerged in the main stream. This method was applied to the analysis of 11 tributary debris flow events during Typhoon Morakot, and the results indicate that the dimensionless assessment method can be used to estimate potential areas of landslide dam formation caused by tributary debris flows. Based on this method, government authorities can determine potential areas of landslide dam formation caused by debris flows and mitigate possible disasters accordingly through a properly prepared response plan, especially for early identification.


Author(s):  
Husam Osman ◽  
Kazimierz Adamiak ◽  
G. S. Peter Castle ◽  
Hua-Tzu (Charles) Fan ◽  
Joseph Simmer

In this paper, a full 3D numerical model using ANSYS commercial software has been created to simulate the particle deposition profile for stationary and moving flat targets, assuming multiple injections of charged poly-dispersed particles. Different injection angles along three virtual rings were assumed to form a shower injection pattern. The experimental and the numerical results of deposition thickness have been presented and compared for different injection patterns. It has been found that there are some parameters, such as the total number of injection points, the radii of the rings and the fractional mass flow rate in each injection ring, which affect the numerical results of the deposition thickness and uniformity.


2009 ◽  
Vol 626-627 ◽  
pp. 357-362
Author(s):  
Y.Y. Li ◽  
Z.N. Guo ◽  
G.Y. Liu

The technology of electro-spark deposition has been investigated and the thickness of H13 steel coating up to 16.2μm has been achieved by applied SH-1000 electro-spark deposition power. It analyzed the effect of parameters such as voltage, discharge frequency, argon gas flow and rate deposition on the deposition thickness. The optimum deposition parameters have been selected through the orthogonal design. In order to improve coating quality, a novel method based on ultrasonic-assisted electro-spark deposition has been put forward.


2007 ◽  
Vol 84 (4) ◽  
pp. 594-598 ◽  
Author(s):  
Muhammad Mustafa Hussain ◽  
Ed Labelle ◽  
Barry Sassman ◽  
Gabe Gebara ◽  
Sidi Lanee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document