scholarly journals Physiological role of actin regulation in male fertility: Insight into actin capping proteins in spermatogenic cells

2020 ◽  
Vol 19 (2) ◽  
pp. 120-127
Author(s):  
Tetsuji Soda ◽  
Yasushi Miyagawa ◽  
Shinichiro Fukuhara ◽  
Hiromitsu Tanaka
2014 ◽  
Vol 31 ◽  
pp. S43-S44
Author(s):  
Jon Marles-Wright ◽  
Didi He ◽  
Atanas Georgiev ◽  
David Clarke

PLoS ONE ◽  
2014 ◽  
Vol 9 (12) ◽  
pp. e114379 ◽  
Author(s):  
Piotr Jarocki ◽  
Marcin Podleśny ◽  
Paweł Glibowski ◽  
Zdzisław Targoński

Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1547 ◽  
Author(s):  
Claudia D’Agostino ◽  
Osama A. Elkashty ◽  
Clara Chivasso ◽  
Jason Perret ◽  
Simon D. Tran ◽  
...  

The main role of salivary glands (SG) is the production and secretion of saliva, in which aquaporins (AQPs) play a key role by ensuring water flow. The AQPs are transmembrane channel proteins permeable to water to allow water transport across cell membranes according to osmotic gradient. This review gives an insight into SG AQPs. Indeed, it gives a summary of the expression and localization of AQPs in adult human, rat and mouse SG, as well as of their physiological role in SG function. Furthermore, the review provides a comprehensive view of the involvement of AQPs in pathological conditions affecting SG, including Sjögren’s syndrome, diabetes, agedness, head and neck cancer radiotherapy and SG cancer. These conditions are characterized by salivary hypofunction resulting in xerostomia. A specific focus is given on current and future therapeutic strategies aiming at AQPs to treat xerostomia. A deeper understanding of the AQPs involvement in molecular mechanisms of saliva secretion and diseases offered new avenues for therapeutic approaches, including drugs, gene therapy and tissue engineering. As such, AQP5 represents a potential therapeutic target in different strategies for the treatment of xerostomia.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1187
Author(s):  
Alexander A. Tyurin ◽  
Alexandra V. Suhorukova ◽  
Ksenia V. Kabardaeva ◽  
Irina V. Goldenkova-Pavlova

A large data array on plant gene expression accumulated thanks to comparative omic studies directs the efforts of researchers to the specific or fine effects of the target gene functions and, as a consequence, elaboration of relatively simple and concurrently effective approaches allowing for the insight into the physiological role of gene products. Numerous studies have convincingly demonstrated the efficacy of transient expression strategy for characterization of the plant gene functions. The review goals are (i) to consider the advantages and limitations of different plant systems and methods of transient expression used to find out the role of gene products; (ii) to summarize the current data on the use of the transient expression approaches for the insight into fine mechanisms underlying the gene function; and (iii) to outline the accomplishments in efficient transient expression of plant genes. In general, the review discusses the main and critical steps in each of the methods of transient gene expression in plants; areas of their application; main results obtained using plant objects; their contribution to our knowledge about the fine mechanisms of the plant gene functions underlying plant growth and development; and clarification of the mechanisms regulating complex metabolic pathways.


2018 ◽  
Vol 150 (2) ◽  
pp. 185-187 ◽  
Author(s):  
Ruth D. Murrell-Lagnado

Murrell-Lagnado provides insight into new research revealing the physiological role of lysosomal P2X4 channels.


2010 ◽  
Vol 21 (5) ◽  
pp. 704-711 ◽  
Author(s):  
Elisa Ciraolo ◽  
Fulvio Morello ◽  
Robin M. Hobbs ◽  
Frieder Wolf ◽  
Romina Marone ◽  
...  

Phosphoinositide 3-kinases (PI3K) are key molecular players in male fertility. However, the specific roles of different p110 PI3K catalytic subunits within the spermatogenic lineage have not been characterized so far. Herein, we report that male mice expressing a catalytically inactive p110β develop testicular hypotrophy and impaired spermatogenesis, leading to a phenotype of oligo-azoospermia and defective fertility. The examination of testes from p110β-defective tubules demonstrates a widespread loss in spermatogenic cells, due to defective proliferation and survival of pre- and postmeiotic cells. In particular, p110β is crucially needed in c-Kit–mediated spermatogonial expansion, as c-Kit–positive cells are lost in the adult testis and activation of Akt by SCF is blocked by a p110β inhibitor. These data establish that activation of the p110β PI3K isoform by c-Kit is required during spermatogenesis, thus opening the way to new treatments for c-Kit positive testicular cancers.


1986 ◽  
Vol 111 (2) ◽  
pp. 154-161 ◽  
Author(s):  
Ildo Nicoletti ◽  
Paolo Filipponi ◽  
Leone Fedeli ◽  
Franca Ambrosi ◽  
Camillo Giammartino ◽  
...  

Abstract. In order to gain further insight into the role of dopamine (DA) in the control of TSH release and to investigate whether an increased or defective DA inhibition on pituitary thyrotrophs may be considered responsible for the abnormal TSH dynamics in pathological hyperprolactinaemia, we examined the effect of low-dose DA infusion on TRH stimulated TSH secretion in normally cycling women and in patients with pathological hyperprolactinaemia. The effect of long-term bromocriptine therapy on TSH dynamics was also evaluated in a selected group of hyperprolactinaemic women. Fifty-two hyperprolactinaemic patients with no other signs of pituitary or thyroid dysfunction had significantly higher mean TSH serum concentrations and mean TSH peak values after TRH administration than 75 healthy controls. Furthermore, the TSH rises induced by the DA-synthesis inhibitor α-methyl-p-tyrosine (AMPT, 500 mg orally) were enhanced in both prolactinoma and 'idiopathic hyperprolactinaemia' patients as compared with controls. There was a positive correlation between the TRH- and AMPT-induced TSH rises in the hyperprolactinaemic group. Low-dose DA infusion (0.1 μg/kg min) reduced TSH response to TRH in both regularly cycling women and patients with hyperprolactinaemic amenorrhoea. Long-term bromocriptine therapy (2.5 mg tid over 60– 150 days) not only normalized serum Prl levels, but also reduced the TSH response to TRH in 7 hyperprolactinaemic women who had presented exaggerated TSH responses to the basal TRH test. These findings confirm that DA plays a physiological role in the inhibition of TSH release, probably at the level of the anterior pituitary. The fact that both low-dose DA infusion and long-term bromocriptine treatment effectively reduced TSH release in hyperprolactinaemic patients seems to indicate that endogenous DA inhibition of pituitary thyrotrophs is reduced rather than enhanced in pathological hyperprolactinaemia.


2001 ◽  
Vol 22 (3) ◽  
pp. 289-318 ◽  
Author(s):  
Liza O’Donnell ◽  
Kirsten M. Robertson ◽  
Margaret E. Jones ◽  
Evan R. Simpson

Abstract Although it has been known for many years that estrogen administration has deleterious effects on male fertility, data from transgenic mice deficient in estrogen receptors or aromatase point to an essential physiological role for estrogen in male fertility. This review summarizes the current knowledge on the localization of estrogen receptors and aromatase in the testis in an effort to understand the likely sites of estrogen action. The review also discusses the many studies that have used models employing the administration of estrogenic substances to show that male fertility is responsive to estrogen, thus providing a mechanism by which inappropriate exposure to estrogenic substances may cause adverse effects on spermatogenesis and male fertility. The reproductive phenotypes of mice deficient in estrogen receptors α and/or β and aromatase are also compared to evaluate the physiological role of estrogen in male fertility. The review focuses on the effects of estrogen administration or deprivation, primarily in rodents, on the hypothalamo-pituitary-testis axis, testicular function (including Leydig cell, Sertoli cell, and germ cell development and function), and in the development and function of the efferent ductules and epididymis. The requirement for estrogen in normal male sexual behavior is also reviewed, along with the somewhat limited data on the fertility of men who lack either the capacity to produce or respond to estrogen. This review highlights the ability of exogenous estrogen exposure to perturb spermatogenesis and male fertility, as well as the emerging physiological role of estrogens in male fertility, suggesting that, in this local context, estrogenic substances should also be considered “male hormones.”


2011 ◽  
Vol 34 (10) ◽  
pp. 1655-1662 ◽  
Author(s):  
Elisabetta Menna ◽  
Giuliana Fossati ◽  
Giorgio Scita ◽  
Michela Matteoli

Sign in / Sign up

Export Citation Format

Share Document