Mission Energy Prediction for Unmanned Ground Vehicles Using Real-time Measurements and Prior Knowledge

2013 ◽  
Vol 30 (3) ◽  
pp. 399-414 ◽  
Author(s):  
Amir Sadrpour ◽  
Jionghua Judy Jin ◽  
A. Galip Ulsoy
Author(s):  
Amir Sadrpour ◽  
Jionghua (Judy) Jin ◽  
A. Galip Ulsoy

Surveillance missions that involve unmanned ground vehicles (UGVs) include situations where a UGV has to choose between alternative paths to complete its mission. Currently, UGV missions are often limited by the available on-board energy. Thus, we propose a dynamic most energy-efficient path planning algorithm that integrates mission prior knowledge with real-time sensory information to identify the mission’s most energy-efficient path. Our proposed approach predicts and updates the distribution of energy requirement of alternative paths using recursive Bayesian estimation through two stages: (1) exploration — road segments are explored to reduce their energy prediction uncertainty; (2) exploitation — the most energy-efficient path is selected using the collected information in the exploration stage and is traversed. Our simulation results show that the proposed approach outperforms offline methods, as well as a method that only relies on exploitation to identify the most energy-efficient path.


2022 ◽  
Vol 12 (2) ◽  
pp. 682
Author(s):  
Yuzhan Wu ◽  
Chenlong Li ◽  
Changshun Yuan ◽  
Meng Li ◽  
Hao Li

Tracking control of Small Unmanned Ground Vehicles (SUGVs) is easily affected by the nonlinearity and time-varying characteristics. An improved predictive control scheme based on the multi-dimensional Taylor network (MTN) is proposed for tracking control of SUGVs. First, a MTN model is used as a predictive model to construct a SUGV model and back propagation (BP) is taken as its learning algorithm. Second, the predictive control law is designed and the traditional objective function is improved to obtain a predictive objective function with a differential term. The optimal control quantity is given in real time through iterative optimization. Meanwhile, the stability of the closed-loop system is proved by the Lyapunov stability theorem. Finally, a tracking control experiment on the SUGV model is used to verify the effectiveness of the proposed scheme. For comparison, traditional MTN and Radial Basis Function (RBF) predictive control schemes are introduced. Moreover, a noise disturbance is considered. Experimental results show that the proposed scheme is effective, which ensures that the vehicle can quickly and accurately track the desired yaw velocity signal with good real-time, robustness, and convergence performance, and is superior to other comparison schemes.


Sign in / Sign up

Export Citation Format

Share Document