Optimal Fish Passage Barrier Removal-Revisited

2014 ◽  
Vol 32 (3) ◽  
pp. 418-428 ◽  
Author(s):  
S. King ◽  
J. R. O'Hanley
Keyword(s):  
BioScience ◽  
2020 ◽  
Vol 70 (10) ◽  
pp. 871-886
Author(s):  
Daniel P Zielinski ◽  
Robert L McLaughlin ◽  
Thomas C Pratt ◽  
R Andrew Goodwin ◽  
Andrew M Muir

Abstract Barrier removal is a recognized solution for reversing river fragmentation, but restoring connectivity can have consequences for both desirable and undesirable species, resulting in a connectivity conundrum. Selectively passing desirable taxa while restricting the dispersal of undesirable taxa (selective connectivity) would solve many aspects of the connectivity conundrum. Selective connectivity is a technical challenge of sorting an assortment of things. Multiattribute sorting systems exist in other fields, although none have yet been devised for freely moving organisms within a river. We describe an approach to selective fish passage that integrates ecology and biology with engineering designs modeled after material recycling processes that mirror the stages of fish passage: approach, entry, passage, and fate. A key feature of this concept is the integration of multiple sorting processes each targeting a specific attribute. Leveraging concepts from other sectors to improve river ecosystem function may yield fast, reliable solutions to the connectivity conundrum.


2020 ◽  
pp. 68-77
Author(s):  
O.N. CHERNYKH ◽  
◽  
A.V. RBURLACHENKO

Recommendations are presented for solving issues that arise in the design and operation of tubular transport crossings of corrugated metal structures through spawning streams while ensuring the safety and natural reproduction of fish stocks. There are discussed the results of experimental studies of culverts made of metal corrugated pipes with a normal and spiral shape of corrugation the bottom of which is buried and filled with suitable granular material to the level of the natural channel of a small watercourse. It is established that when 10% of the area of the corrugated pipe is occupied by stone filling, its throughput is reduced by about 10-12%. Based on the review of the existing literature and the results of laboratory experiments, data is provided to estimate the values of the roughness coefficients of the composite cross-section of a single-point junction and directions for future research on culvert reclamation are outlined. Studying of the structure of the velocity distribution in culverts can lead to the improved conditions for fish passage without installing special structural elements in the transit path of the fish passage structure.


10.29007/2k64 ◽  
2018 ◽  
Author(s):  
Pat Prodanovic ◽  
Cedric Goeury ◽  
Fabrice Zaoui ◽  
Riadh Ata ◽  
Jacques Fontaine ◽  
...  

This paper presents a practical methodology developed for shape optimization studies of hydraulic structures using environmental numerical modelling codes. The methodology starts by defining the optimization problem and identifying relevant problem constraints. Design variables in shape optimization studies are configuration of structures (such as length or spacing of groins, orientation and layout of breakwaters, etc.) whose optimal orientation is not known a priori. The optimization problem is solved numerically by coupling an optimization algorithm to a numerical model. The coupled system is able to define, test and evaluate a multitude of new shapes, which are internally generated and then simulated using a numerical model. The developed methodology is tested using an example of an optimum design of a fish passage, where the design variables are the length and the position of slots. In this paper an objective function is defined where a target is specified and the numerical optimizer is asked to retrieve the target solution. Such a definition of the objective function is used to validate the developed tool chain. This work uses the numerical model TELEMAC- 2Dfrom the TELEMAC-MASCARET suite of numerical solvers for the solution of shallow water equations, coupled with various numerical optimization algorithms available in the literature.


1994 ◽  
Author(s):  
J. E. Francfort ◽  
G. F. Cada ◽  
D. D. Dauble ◽  
R. T. Hunt ◽  
D. W. Jones ◽  
...  

2002 ◽  
Vol 37 (11) ◽  
pp. 191-210 ◽  
Author(s):  
Karen Zee ◽  
Martin Rinard

2021 ◽  
Vol 13 (14) ◽  
pp. 2671
Author(s):  
Xiaoqin Zang ◽  
Tianzhixi Yin ◽  
Zhangshuan Hou ◽  
Robert P. Mueller ◽  
Zhiqun Daniel Deng ◽  
...  

Adult American eels (Anguilla rostrata) are vulnerable to hydropower turbine mortality during outmigration from growth habitat in inland waters to the ocean where they spawn. Imaging sonar is a reliable and proven technology for monitoring of fish passage and migration; however, there is no efficient automated method for eel detection. We designed a deep learning model for automated detection of adult American eels from sonar data. The method employs convolution neural network (CNN) to distinguish between 14 images of eels and non-eel objects. Prior to image classification with CNN, background subtraction and wavelet denoising were applied to enhance sonar images. The CNN model was first trained and tested on data obtained from a laboratory experiment, which yielded overall accuracies of >98% for image-based classification. Then, the model was trained and tested on field data that were obtained near the Iroquois Dam located on the St. Lawrence River; the accuracy achieved was commensurate with that of human experts.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1186
Author(s):  
Francisco Javier Bravo-Córdoba ◽  
Juan Francisco Fuentes-Pérez ◽  
Jorge Valbuena-Castro ◽  
Andrés Martínez de Azagra-Paredes ◽  
Francisco Javier Sanz-Ronda

With the aim of building more compact fishways and adapting them to field conditions to improve their location by fish, it is common to use turning pools, reducing the longitudinal development of the construction. However, depending on their design, turning pools may affect the hydraulic performance of the fishway and consequently the fish passage. To study these phenomena, turning pools in a vertical slot and in different configurations of submerged notches with bottom orifice fishway types were assessed. Both types of fishways were studied using numerical 3D models via OpenFOAM, a computational fluid dynamics software, in combination with fish responses, assessed with PIT (Passive Integrated Transponder) tag telemetry for three different species of potamodromous cyprinids in several fishways. Results show differences between the hydrodynamics of straight and turning pools, with lower values in the hydrodynamic variables in turning pools. Regarding fish behavior, the ascent was slower in turning pools but with no effect on passage success and without being a problem for fish migration. This information validates the use of turning pools as a key design component for fishways for studied species.


Sign in / Sign up

Export Citation Format

Share Document