Novel chromium layers formed by nitrogen-ion implantation of conventional and ABCD electrodeposited films, part 4

1990 ◽  
Vol 16 (1-12) ◽  
pp. 488-492 ◽  
Author(s):  
Hermann Ferber ◽  
Gar B. Hoflund ◽  
Charles K. Mount ◽  
Shigeo Hoshino
Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2324
Author(s):  
Mirosław Szala ◽  
Dariusz Chocyk ◽  
Anna Skic ◽  
Mariusz Kamiński ◽  
Wojciech Macek ◽  
...  

From the wide range of engineering materials traditional Stellite 6 (cobalt alloy) exhibits excellent resistance to cavitation erosion (CE). Nonetheless, the influence of ion implantation of cobalt alloys on the CE behaviour has not been completely clarified by the literature. Thus, this work investigates the effect of nitrogen ion implantation (NII) of HIPed Stellite 6 on the improvement of resistance to CE. Finally, the cobalt-rich matrix phase transformations due to both NII and cavitation load were studied. The CE resistance of stellites ion-implanted by 120 keV N+ ions two fluences: 5 × 1016 cm−2 and 1 × 1017 cm−2 were comparatively analysed with the unimplanted stellite and AISI 304 stainless steel. CE tests were conducted according to ASTM G32 with stationary specimen method. Erosion rate curves and mean depth of erosion confirm that the nitrogen-implanted HIPed Stellite 6 two times exceeds the resistance to CE than unimplanted stellite, and has almost ten times higher CE reference than stainless steel. The X-ray diffraction (XRD) confirms that NII of HIPed Stellite 6 favours transformation of the ε(hcp) to γ(fcc) structure. Unimplanted stellite ε-rich matrix is less prone to plastic deformation than γ and consequently, increase of γ phase effectively holds carbides in cobalt matrix and prevents Cr7C3 debonding. This phenomenon elongates three times the CE incubation stage, slows erosion rate and mitigates the material loss. Metastable γ structure formed by ion implantation consumes the cavitation load for work-hardening and γ → ε martensitic transformation. In further CE stages, phases transform as for unimplanted alloy namely, the cavitation-inducted recovery process, removal of strain, dislocations resulting in increase of γ phase. The CE mechanism was investigated using a surface profilometer, atomic force microscopy, SEM-EDS and XRD. HIPed Stellite 6 wear behaviour relies on the plastic deformation of cobalt matrix, starting at Cr7C3/matrix interfaces. Once the Cr7C3 particles lose from the matrix restrain, they debond from matrix and are removed from the material. Carbides detachment creates cavitation pits which initiate cracks propagation through cobalt matrix, that leads to loss of matrix phase and as a result the CE proceeds with a detachment of massive chunk of materials.


2015 ◽  
Vol 33 (6) ◽  
pp. 629-632 ◽  
Author(s):  
Hongchuan YANG ◽  
Shirong ZHANG ◽  
Dunbo YU ◽  
Kuoshe LI ◽  
Quanxia HU ◽  
...  

1998 ◽  
Vol 16 (2) ◽  
pp. 477-481 ◽  
Author(s):  
Yong Tae Kim ◽  
Chul Soon Kwon ◽  
Dong Joon Kim ◽  
Jong-Wan Park ◽  
Chang Woo Lee

1988 ◽  
Vol 100 ◽  
Author(s):  
S. B. Ogale ◽  
Seema Teli ◽  
Sunita Chopda ◽  
D. M. Phase ◽  
S. M. Kanetkar

ABSTRACTThe effect of N2+ ion implantation in ∝-Fe2O3 has been investigated by means of Conversion Electron Mossbauer Spectroscopy (CEMS). It Is shown that at a dose value of 1×1017 ions/cm2 and 3×1017 Ions/cm2 the samples exhibit new Interesting hyperfine features which can not be ascribed to known oxide or nitride phases. It Is thus concluded that Iron Oxynitrlde Is formed by the nitrogen Implantation process.


1991 ◽  
Vol 252 ◽  
Author(s):  
Beverly L. Giammara ◽  
James M. Williams ◽  
David J. Birch ◽  
Joanne J. Dobbins

ABSTRACTThe effects of nitrogen ion implantation of Ti-6AI-4V alloy on growth of Pseudomonas aeruginosa bacteria on surfaces of the alloy have been investigated. Results for ion implanted samples were compared with controls with similarly smoothly polished surfaces and with controls that had intentionally roughened surfaces. The test consisted of exposing sterile alloy samples to a microbiological broth, to which 24 hour-old cultures of Pseudomonas aeruginosa had been added. After bioassociation at normal temperature 37°C, bacteria adhering to the surface were fixed and treated with a new ruthenium tetroxide staining method, and quantified by use of scanning electron microscopy (SEM), back-scattered electron imaging and EDAX energy dispersive microanalysis. For smooth samples of the alloy, after a 12 hour growth period, the retained bacteria (revealed by the biologically incorporated ruthenium), decreased monotonically with nitrogen dose out to a total fluence of approximately 7 × 1017/cm2 in an affected depth of approximately 0.1500 μm. The SEM confirmed that the Pseudomonas aeruginosa adhered equally to control materials. The ruthenium studies revealed that the amount of bacterial adhesion is indirectly proportional to the nitrogen ion implantation of the titanium. The greater the percentage of nitrogen ion implantation in the titanium alloy, the less bacteria colonized the disk.


Sign in / Sign up

Export Citation Format

Share Document