Preparation of High‐Strength and High‐Permeability EC/PI/MOF Mixed Matrix Membrane**

2022 ◽  
Vol 7 (2) ◽  
Author(s):  
Yushu Zhang ◽  
Hongge Jia ◽  
Wenqiang Ma ◽  
Shuangping Xu ◽  
Shaobin Li ◽  
...  
2015 ◽  
Vol 21 (2) ◽  
pp. 277-284
Author(s):  
Dragutin Nedeljkovic ◽  
Marija Stevanovic ◽  
Mirko Stijepovic ◽  
Aleksandar Stajcic ◽  
Aleksandar Grujic ◽  
...  

The task of this work was to construct the mixed matrix membrane based on polymer that could be used for the treatment of the waste gases. Therefore, high permeability for the carbon dioxide and low permeability for other gases commonly present in the industrial combustion waste gases (nitrogen, oxygen, hydrogen, methane) are essential. Those membranes belong to the group of dense composite membranes, and mechanism for separation is based on the solution-diffusion mechanism. In this paper, feasibility of the application of poly(ethyleneoxid)-copoly(phtalamide) was tested. In order to enchase the permeability of carbon dioxide, three different zeolites were incorporated, and in order to improve compatibility between the inorganic particles and polymer chains, n-tetradecyldimethylamonium bromide (NTAB).was added. Three zeolites were with the 2-dimensional pores (IHW, NSI and TER). The best results in carbon dioxide/hydrogen selectivity were obtained with the membrane constructed with PEBAX 1657 and surface treated zeolites, while the better results concerning selectivity were gained with membranes based on the Polyactive.


Author(s):  
N. S. Fadaly ◽  
Farhana Aziz

The aim of this study is to investigate the effects of polysulfone (PSF) and lanthanum orthoferrite (LaFeO3) incorporated mixed matrix membrane (MMM) on gas permeation and selectivity properties. PSF/LaFeO3 MMMs were prepared with various weights loading of LaFeO3. The membranes obtained were characterized using scanning electron microscope (SEM), thermal gravimetric analysis (TGA) and Fourier-transform infra-red (FT-IR). The gas transport properties of MMM were measured using single gas permeation set up (CO2, CH4, O2 and N2) at ambient temperature, and feed pressure of 2, 4 and 6 bar. The permeation test showed that the mixed matrix membrane exhibited high permeability. With increasing LaFeO3 weight loading to 1.0%, the highest permeability values were 47.74 GPU for CO2, 29.85 GPU for CH4, 57.56 GPU for O2, and 40.66 GPU for N2. The results also showed that by incorporating 1.0wt% of LaFeO3 into PSF matrix, the highest CO2/CH4 and O2/N2 selectivity of 1.60 and 1.42 respectively were obtained. Overall, all the resultants MMM showed higher permeability and selectivity compared to pure PSF membrane.


2021 ◽  
Vol 13 (9) ◽  
pp. 11296-11305
Author(s):  
Xu Jiang ◽  
Shanshan He ◽  
Gang Han ◽  
Jun Long ◽  
Songwei Li ◽  
...  

Author(s):  
Amita Bedar ◽  
Beena G. Singh ◽  
Pradip K. Tewari ◽  
Ramesh C. Bindal ◽  
Soumitra Kar

Abstract Cerium oxide (ceria) contains two stable states of cerium ions (Ce3+ and Ce4+). The presence of these two states and the ability to swap from one state to another (Ce3+ ↔ Ce4+) by scavenging the highly reactive oxygen species (ROS) generated from radiolysis of water, ensure the enhanced stability of polysulfone (Psf) membranes in the γ-radiation environment. In this study, the ROS scavenging ability of ceria was studied. Ceria nanoparticles were found to scavenge ROS like hydroxyl radicals and hydrogen peroxide (H2O2). The H2O2 scavenging is due to the peroxidase-like catalytic activity of ceria nanoparticles. The ROS scavenging is responsible for offering protection to the Psf host matrix and in turn the stability to the Psf-ceria mixed-matrix membranes (MMMs) in γ-radiation environment. Thus, presence of ceria nanoparticles provides an opportunity for utilizing Psf-ceria MMMs in ionizing radiation environment with increased life span, without compromise in the performance.


Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 194
Author(s):  
Xiuxiu Ren ◽  
Masakoto Kanezashi ◽  
Meng Guo ◽  
Rong Xu ◽  
Jing Zhong ◽  
...  

A new polyhedral oligomeric silsesquioxane (POSS) designed with eight –(CH2)3–NH–(CH2)2–NH2 groups (PNEN) at its apexes was used as nanocomposite uploading into 1,2-bis(triethoxysilyl)ethane (BTESE)-derived organosilica to prepare mixed matrix membranes (MMMs) for gas separation. The mixtures of BTESE-PNEN were uniform with particle size of around 31 nm, which is larger than that of pure BTESE sols. The characterization of thermogravimetric (TG) and gas permeance indicates good thermal stability. A similar amine-contained material of 3-aminopropyltriethoxysilane (APTES) was doped into BTESE to prepare hybrid membranes through a copolymerized strategy as comparison. The pore size of the BTESE-PNEN membrane evaluated through a modified gas-translation model was larger than that of the BTESE-APTES hybrid membrane at the same concentration of additions, which resulted in different separation performance. The low values of Ep(CO2)-Ep(N2) and Ep(N2) for the BTESE-PNEN membrane at a low concentration of PNEN were close to those of copolymerized BTESE-APTES-related hybrid membranes, which illustrates a potential CO2 separation performance by using a mixed matrix membrane strategy with multiple amine POSS as particles.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2053
Author(s):  
Dragutin Nedeljkovic

An increased demand for energy in recent decades has caused an increase in the emissions of combustion products, among which carbon-dioxide is the most harmful. As carbon-dioxide induces negative environmental effects, like global warming and the greenhouse effect, a decrease of the carbon-dioxide emission has emerged as one of the most urgent tasks in engineering. In this work, the possibility for the application of the polymer-based, dense, mixed matrix membranes for flue gas treatment was tested. The task was to test a potential decrease in the permeability and selectivity of a mixed-matrix membrane in the presence of moisture and at elevated temperature. Membranes are based on two different poly(ethylene oxide)-based polymers filled with two different zeolite powders (ITR and IWS). An additive of detergent type was added to improve the contact properties between the zeolite and polymer matrix. The measurements were performed at three different temperatures (30, 60, and 90 °C) under wet conditions, with partial pressure of the water equal to the vapor pressure of the water at the given temperature. The permeability of carbon-dioxide, hydrogen, nitrogen, and oxygen was measured, and the selectivity of the carbon-dioxide versus other gases was determined. Obtained results have shown that an increase of temperature and partial pressure of the vapor slightly increase both the selectivity and permeability of the synthesized membranes. It was also shown that the addition of the zeolite powder increases the permeability of carbon-dioxide while maintaining the selectivity, compared to hydrogen, oxygen, and nitrogen.


Author(s):  
Yuanyue Wu ◽  
Zhen Wang ◽  
Liang Zhu ◽  
Kaijun Xiao ◽  
Yurong Yin ◽  
...  

2014 ◽  
Vol 241 ◽  
pp. 495-503 ◽  
Author(s):  
A.K. Zulhairun ◽  
A.F. Ismail ◽  
T. Matsuura ◽  
M.S. Abdullah ◽  
A. Mustafa

Author(s):  
Ilaria Geremia ◽  
Jacobus A. W. Jong ◽  
Cornelus F. van Nostrum ◽  
Wim E. Hennink ◽  
Karin G. F. Gerritsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document