scholarly journals Steerable Microinvasive Probes for Localized Drug Delivery to Deep Tissue

Small ◽  
2019 ◽  
Vol 15 (37) ◽  
pp. 1901459 ◽  
Author(s):  
Max J. Cotler ◽  
Erin B. Rousseau ◽  
Khalil B. Ramadi ◽  
Joshua Fang ◽  
Ann M. Graybiel ◽  
...  
2020 ◽  
Vol 27 (6) ◽  
pp. 854-902 ◽  
Author(s):  
Raluca Ion ◽  
Madalina Georgiana Necula ◽  
Anca Mazare ◽  
Valentina Mitran ◽  
Patricia Neacsu ◽  
...  

TiO2 nanotubes (TNTs) are attractive nanostructures for localized drug delivery. Owing to their excellent biocompatibility and physicochemical properties, numerous functionalizations of TNTs have been attempted for their use as therapeutic agent delivery platforms. In this review, we discuss the current advances in the applications of TNT-based delivery systems with an emphasis on the various functionalizations of TNTs for enhancing osteogenesis at the bone-implant interface and for preventing implant-related infection. Innovation of therapies for enhancing osteogenesis still represents a critical challenge in regeneration of bone defects. The overall concept focuses on the use of osteoconductive materials in combination with the use of osteoinductive or osteopromotive factors. In this context, we highlight the strategies for improving the functionality of TNTs, using five classes of bioactive agents: growth factors (GFs), statins, plant derived molecules, inorganic therapeutic ions/nanoparticles (NPs) and antimicrobial compounds.


2009 ◽  
Vol 96 (3) ◽  
pp. 687a ◽  
Author(s):  
Eva Christabel Williams ◽  
Ryan Toomey ◽  
Norma Alcantar

2016 ◽  
Vol 4 (48) ◽  
pp. 7845-7851 ◽  
Author(s):  
Junpeng Shi ◽  
Meng Sun ◽  
Xia Sun ◽  
Hongwu Zhang

Near-infrared persistent luminescence hollow mesoporous nanospheres have been synthesized via a template method. These nanospheres can be used as large capacity drug carriers and realize super long-term and high sensitivity tracking of drug delivery in deep tissue.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3580
Author(s):  
Chuda Chittasupho ◽  
Jakrapong Angklomklew ◽  
Thanu Thongnopkoon ◽  
Wongwit Senavongse ◽  
Pensak Jantrawut ◽  
...  

A hydrogel scaffold is a localized drug delivery system that can maintain the therapeutic level of drug concentration at the tumor site. In this study, the biopolymer hydrogel scaffold encapsulating doxorubicin was fabricated from gelatin, sodium carboxymethyl cellulose, and gelatin/sodium carboxymethyl cellulose mixture using a lyophilization technique. The effects of a crosslinker on scaffold morphology and pore size were determined using scanning electron microscopy. The encapsulation efficiency and the release profile of doxorubicin from the hydrogel scaffolds were determined using UV-Vis spectrophotometry. The anti-proliferative effect of the scaffolds against the lung cancer cell line was investigated using an MTT assay. The results showed that scaffolds made from different types of natural polymer had different pore configurations and pore sizes. All scaffolds had high encapsulation efficiency and drug-controlled release profiles. The viability and proliferation of A549 cells, treated with gelatin, gelatin/SCMC, and SCMC scaffolds containing doxorubicin significantly decreased compared with control. These hydrogel scaffolds might provide a promising approach for developing a superior localized drug delivery system to kill lung cancer cells.


2014 ◽  
Vol 50 (58) ◽  
pp. 7824-7827 ◽  
Author(s):  
Minghui Zan ◽  
Junjie Li ◽  
Shizhong Luo ◽  
Zhishen Ge

The multistage polymeric nanogel delivery systems were constructed via host–guest interactions, which showed tumor acidity-triggered disassembly into smaller nanoparticles for deep tissue penetration, high-efficiency cellular uptake, and intracellular endo-lysosomal pH-responsive drug release.


2009 ◽  
Vol 9 (8) ◽  
pp. 786-794 ◽  
Author(s):  
Laurianne Timbart ◽  
M. Yat Tse ◽  
Stephen C. Pang ◽  
Oladunni Babasola ◽  
Brian G. Amsden

Author(s):  
George Horng ◽  
Syed Askari ◽  
Yeon Choi ◽  
Warren Grundfest

Sign in / Sign up

Export Citation Format

Share Document