Influence of Cassava Storage Root Development and Environmental Conditions on Starch Granule Size Distribution

2008 ◽  
Vol 60 (12) ◽  
pp. 696-705 ◽  
Author(s):  
Prapapan Teerawanichpan ◽  
Manassawe Lertpanyasampatha ◽  
Supatcharee Netrphan ◽  
Saiyavit Varavinit ◽  
Opas Boonseng ◽  
...  
2016 ◽  
Vol 42 (11) ◽  
pp. 1727
Author(s):  
Yang-Yang LI ◽  
Cong FEI ◽  
Jing CUI ◽  
Kai-Yong WANG ◽  
Fu-Yu MA ◽  
...  

Plant Methods ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Michael Gomez Selvaraj ◽  
Maria Elker Montoya-P ◽  
John Atanbori ◽  
Andrew P. French ◽  
Tony Pridmore

Abstract Background Root and tuber crops are becoming more important for their high source of carbohydrates, next to cereals. Despite their commercial impact, there are significant knowledge gaps about the environmental and inherent regulation of storage root (SR) differentiation, due in part to the innate problems of studying storage roots and the lack of a suitable model system for monitoring storage root growth. The research presented here aimed to develop a reliable, low-cost effective system that enables the study of the factors influencing cassava storage root initiation and development. Results We explored simple, low-cost systems for the study of storage root biology. An aeroponics system described here is ideal for real-time monitoring of storage root development (SRD), and this was further validated using hormone studies. Our aeroponics-based auxin studies revealed that storage root initiation and development are adaptive responses, which are significantly enhanced by the exogenous auxin supply. Field and histological experiments were also conducted to confirm the auxin effect found in the aeroponics system. We also developed a simple digital imaging platform to quantify storage root growth and development traits. Correlation analysis confirmed that image-based estimation can be a surrogate for manual root phenotyping for several key traits. Conclusions The aeroponic system developed from this study is an effective tool for examining the root architecture of cassava during early SRD. The aeroponic system also provided novel insights into storage root formation by activating the auxin-dependent proliferation of secondary xylem parenchyma cells to induce the initial root thickening and bulking. The developed system can be of direct benefit to molecular biologists, breeders, and physiologists, allowing them to screen germplasm for root traits that correlate with improved economic traits.


2002 ◽  
Vol 108 (2) ◽  
pp. 200-203 ◽  
Author(s):  
V. Psota ◽  
I. Bohačenko ◽  
J. Hartmann ◽  
M. Budinská ◽  
J. Chmelík

2017 ◽  
Vol 77 ◽  
pp. 211-218 ◽  
Author(s):  
Jieyun Li ◽  
Awais Rasheed ◽  
Qi Guo ◽  
Yan Dong ◽  
Jindong Liu ◽  
...  

2021 ◽  
Author(s):  
Camilo Humberto Parada Rojas ◽  
Kenneth Pecota ◽  
Christie Almeyda ◽  
G. Craig Yencho ◽  
Lina Quesada-Ocampo

Black rot of sweetpotato caused by Ceratocystis fimbriata, is an important reemerging disease threatening sweetpotato production in the United States. This study assessed disease susceptibility of the storage root surface, storage root cambium, and slips (vine cuttings) of 48 sweetpotato cultivars, advanced breeding lines, and wild relative accessions. We also characterized the effect of storage root development on susceptibility to C. fimbriata. None of the cultivars examined at the storage root level were resistant, with most cultivars exhibiting similar levels of susceptibility. In storage roots, Jewel and Covington were the least susceptible and significantly different from White Bonita, the most susceptible cultivar. In the slip, significant differences in disease incidence were observed for above and below ground plant structures among cultivars, advanced breeding lines, and wild relative accessions. Burgundy and Ipomoea littoralis displayed less below ground disease incidence as compared to NASPOT 8, Sunnyside and LSU-417, the most susceptible cultivars. Correlation of black rot susceptibility between storage roots and slips was not significant, suggesting that slip assays are not useful to predict resistance in storage roots. Immature, early developing storage roots were comparatively more susceptible than older, fully developed storage roots. The high significant correlation between storage root cross-section area and cross-sectional lesion ratio suggests the presence of an unfavorable environment for C. fimbriata as the storage root develops. Incorporating applications of effective fungicides at transplanting and during early storage root development when sweetpotato tissues are most susceptible to black rot infection may improve disease management efforts.


2019 ◽  
Vol 71 (1) ◽  
pp. 105-115 ◽  
Author(s):  
Tansy Chia ◽  
Marcella Chirico ◽  
Rob King ◽  
Ricardo Ramirez-Gonzalez ◽  
Benedetta Saccomanno ◽  
...  

Abstract In Triticeae endosperm (e.g. wheat and barley), starch granules have a bimodal size distribution (with A- and B-type granules) whereas in other grasses the endosperm contains starch granules with a unimodal size distribution. Here, we identify the gene, BGC1 (B-GRANULE CONTENT 1), responsible for B-type starch granule content in Aegilops and wheat. Orthologues of this gene are known to influence starch synthesis in diploids such as rice, Arabidopsis, and barley. However, using polyploid Triticeae species, we uncovered a more complex biological role for BGC1 in starch granule initiation: BGC1 represses the initiation of A-granules in early grain development but promotes the initiation of B-granules in mid grain development. We provide evidence that the influence of BGC1 on starch synthesis is dose dependent and show that three very different starch phenotypes are conditioned by the gene dose of BGC1 in polyploid wheat: normal bimodal starch granule morphology; A-granules with few or no B-granules; or polymorphous starch with few normal A- or B-granules. We conclude from this work that BGC1 participates in controlling B-type starch granule initiation in Triticeae endosperm and that its precise effect on granule size and number varies with gene dose and stage of development.


2008 ◽  
Vol 7 (8) ◽  
pp. 907-914 ◽  
Author(s):  
Wen-yang LI ◽  
Su-hui YAN ◽  
Yan-ping YIN ◽  
Yong LI ◽  
Tai-bo LIANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document