scholarly journals Mifepristone-Inducible Caspase-1 Expression in Mouse Embryonic Stem Cells Eliminates Tumor Formation but Spares Differentiated Cells In Vitro and In Vivo

Stem Cells ◽  
2012 ◽  
Vol 30 (2) ◽  
pp. 169-179 ◽  
Author(s):  
Yi Wang ◽  
Dehua Yang ◽  
Lin Song ◽  
Ting Li ◽  
Juan Yang ◽  
...  
2015 ◽  
Vol 13 (1) ◽  
pp. 720-730 ◽  
Author(s):  
LIPING OU ◽  
LIAOQIONG FANG ◽  
HEJING TANG ◽  
HAI QIAO ◽  
XIAOMEI ZHANG ◽  
...  

Author(s):  
Eszter Posfai ◽  
John Paul Schell ◽  
Adrian Janiszewski ◽  
Isidora Rovic ◽  
Alexander Murray ◽  
...  

AbstractTotipotency is the ability of a single cell to give rise to all the differentiated cells that build the conceptus, yet how to capture this property in vitro remains incompletely understood. Defining totipotency relies upon a variety of assays of variable stringency. Here we describe criteria to define totipotency. We illustrate how distinct criteria of increasing stringency can be used to judge totipotency by evaluating candidate totipotent cell types in the mouse, including early blastomeres and expanded or extended pluripotent stem cells. Our data challenge the notion that expanded or extended pluripotent states harbor increased totipotent potential relative to conventional embryonic stem cells under in vivo conditions.


2019 ◽  
Vol 20 (18) ◽  
pp. 4345
Author(s):  
Ming Shi ◽  
Jing Hao ◽  
Xi-Wen Wang ◽  
Le-Qi Liao ◽  
Huiqing Cao ◽  
...  

The DiGeorge syndrome critical region gene 8 (Dgcr8) knockout strategy has been widely used to study the function of canonical microRNAs (miRNAs) in vitro and in vivo. However, primary miRNA (pri-miRNA) transcripts are accumulated in Dgcr8 knockout cells due to interrupted processing. Whether abnormally accumulated pri-miRNAs have any function is unknown. Here, using clustered regularly interspaced short palindromic repeats system/CRISPR-associated protein 9 (CRISPR/Cas9), we successfully knocked out the primary microRNA-290~295 (pri-miR-290~295) cluster, the most highly expressed miRNA cluster in mouse embryonic stem cells (ESCs), in Dgcr8 knockout background. We found that the major defects associated with Dgcr8 knockout in mouse ESCs, including higher expression of epithelial-to-mesenchymal transition (EMT) markers, slower proliferation, G1 accumulation, and defects in silencing self-renewal, were not affected by the deletion of pri-miR-290~290 cluster. Interestingly, the transcription of neighboring gene nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing 12(Nlrp12) was upregulated upon the deletion of the pri-miR-290~295 cluster. Together, our results suggested that the major defects in Dgcr8 knockout ESCs were not due to the accumulation of pri-miR-290~295, and the deletion of miRNA genes could affect the transcription of neighboring DNA elements.


2021 ◽  
Author(s):  
Wei Fan ◽  
Shuang Tang ◽  
Xiaojuan Fan ◽  
Yi Fang ◽  
Xiaojiang Xu ◽  
...  

AbstractSphingolipids are important structural components of cell membranes and prominent signaling molecules controlling cell growth, differentiation, and apoptosis. Sphingolipids are particularly abundant in the brain, and defects in sphingolipid degradation are associated with several human neurodegenerative diseases. However, molecular mechanisms governing sphingolipid metabolism remain unclear. Here we report that sphingolipid degradation is under transcriptional control of SIRT1, a highly conserved mammalian NAD+-dependent protein deacetylase, in mouse embryonic stem cells (mESCs). Deletion of SIRT1 results in accumulation of sphingomyelin in mESCs, primarily due to reduction of SMPDL3B, a GPI-anchored plasma membrane bound sphingomyelin phosphodiesterase. Mechanistically, SIRT1 regulates transcription of Smpdl3b through c-Myc. Functionally, SIRT1 deficiency-induced accumulation of sphingomyelin increases membrane fluidity and impairs neural differentiation in vitro and in vivo. Our findings discover a key regulatory mechanism for sphingolipid homeostasis and neural differentiation, further imply that pharmacological manipulation of SIRT1-mediated sphingomyelin degradation might be beneficial for treatment of human neurological diseases.


2017 ◽  
Vol 126 (04) ◽  
pp. 249-254
Author(s):  
Feng Liu ◽  
Peng yu-huan ◽  
Li Qiang ◽  
Liu Chanchan

AbstractTo study the effects of inducement on the expression of mouse embryonic stem cells SF1-G imprinted genes, Kcnq1 and Cdkn1c during the course of differentiation into islet-like cells in vitro. Mouse embryonic fibroblasts (MEFs) were isolated from pregnant mice embryos and fibroblast feeder cells were prepared by treating 3–5th generations MEFs with Mitomycin C. Moreover, mouse embryonic stem cells were induced to differentiate into islet-like cells directly. RT-PCR and Immunofluorescence staining were used to test the expression of islet cell-specific markers. Cells were collected at various stages throughout the differentiation process and the imprinted genes Kcnq1 and Cdkn1c were tested by reverse transcription-polymerase chain reaction fragment length polymorphism (RT-PCR/RFLP). In the present study, we found that cells appear islet cell-specific gene expression. Furthermore, immunofluorescence shows us that the islet cell-specific hormone protein can be measured at stage, which confirms that the embryonic stem cells can be successfully induced into islet-like cells in vitro. RT-PCR/RFLP analysis showsthat imprinted genes Kcnq1 and Cdkn1c are biallelic expression in the differentiated cells, suggestive of loss of imprinting (LOI), while these genes demonstrate maternal monoallelic expression in the undifferentiated cells’ continued subculture; this marks the maintenance of imprinting (MOI). Our data indicate that mouse embryonic stem cells are induced into islet-like cells in vitro. The gene imprinting status of Kcnq1 and Cdkn1c may be changed in differentiated cells during the induction in vitro.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Wei Fan ◽  
Shuang Tang ◽  
Xiaojuan Fan ◽  
Yi Fang ◽  
Xiaojiang Xu ◽  
...  

Sphingolipids are important structural components of cell membranes and prominent signaling molecules controlling cell growth, differentiation, and apoptosis. Sphingolipids are particularly abundant in the brain, and defects in sphingolipid degradation are associated with several human neurodegenerative diseases. However, molecular mechanisms governing sphingolipid metabolism remain unclear. Here we report that sphingolipid degradation is under transcriptional control of SIRT1, a highly conserved mammalian NAD+-dependent protein deacetylase, in mouse embryonic stem cells (mESCs). Deletion of SIRT1 results in accumulation of sphingomyelin in mESCs, primarily due to reduction of SMPDL3B, a GPI-anchored plasma membrane bound sphingomyelin phosphodiesterase. Mechanistically, SIRT1 regulates transcription of Smpdl3b through c-Myc. Functionally, SIRT1 deficiency-induced accumulation of sphingomyelin increases membrane fluidity and impairs neural differentiation in vitro and in vivo. Our findings discover a key regulatory mechanism for sphingolipid homeostasis and neural differentiation, further imply that pharmacological manipulation of SIRT1-mediated sphingomyelin degradation might be beneficial for treatment of human neurological diseases.


2017 ◽  
Vol 96 (1) ◽  
pp. 47-60 ◽  
Author(s):  
Anita Helinska ◽  
Maciej Krupa ◽  
Karolina Archacka ◽  
Areta M. Czerwinska ◽  
Wladyslawa Streminska ◽  
...  

1998 ◽  
Vol 63 (3) ◽  
pp. 101-113 ◽  
Author(s):  
Marie-José Goumans ◽  
Dorien Ward-van Oostwaard ◽  
Florence Wianny ◽  
Pierre Savatier ◽  
An Zwijsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document