Chemical characterization of environmental particulate matter using synchrotron radiation

1994 ◽  
Vol 23 (1) ◽  
pp. 3-6 ◽  
Author(s):  
Sz. Török ◽  
Gy. Faigel ◽  
K. W. Jones ◽  
M. L. Rivers ◽  
S. R. Sutton ◽  
...  
2003 ◽  
Vol 18 (10) ◽  
pp. 2522-2527 ◽  
Author(s):  
E. D. Specht ◽  
A. Rar ◽  
G. M. Pharr ◽  
E. P. George ◽  
P. Zschack ◽  
...  

A technique based on synchrotron radiation was developed that allows for rapid structural and chemical characterization of ternary alloys over a wide range of composition. The technique was applied to isothermal sections of the Cr–Fe–Ni system grown on Al2O3(0001) sapphire substrates by sequential deposition of layers of graded.thickness followed by annealing to interdiffuse the elements. A film spanning the Cr–Fe–Ni ternary system was measured in 4 h at a resolution of 2 at.% by rastering the sample under a focused beam of synchrotron radiation while simultaneously measuring the diffraction pattern with a charge-coupled device detector to determine crystallographic phases, texture, and lattice parameters and also measuring the x-ray fluorescence with an energy-dispersive detector to determine elemental composition. Maps of phase composition and lattice parameter as a function of composition for several annealing treatments were found to be consistent with equilibrium values. The technique will be useful in combinatorial materials design.


2015 ◽  
Vol 142 ◽  
pp. 763 ◽  
Author(s):  
M.F. Galvão ◽  
T. de M. Cabral ◽  
P.A. de André ◽  
M.de F. Andrade ◽  
R.M. de Miranda ◽  
...  

Author(s):  
Sachchida Tripathi ◽  
Vipul Lalchandani ◽  
Varun Kumar ◽  
Anna Tobler ◽  
Navaneeth Thamban ◽  
...  

<p>Atmospheric particulate matter has adverse effects on human health, and causes over 4 million deaths per year globally. New Delhi was ranked as world’s most polluted megacity with annual average PM<sub>2.5</sub> concentration of ~140 ug.m<sup>-3</sup>. Thus, real time chemical characterization of fine particulate matter and identification of its sources is important for developing cost effective mitigation policies.</p><p>Highly time resolved real-time chemical composition of PM<sub>2.5</sub> was measured using Long-Time of Flight-Aerosol Mass Spectrometer (L-ToF-AMS) at Indian Institute of Technology Delhi and Time of Flight-Aerosol Chemical Speciation Monitor (ToF-ACSM) at Indian Institute of Tropical Meteorology, Delhi, and PM<sub>1 </sub>using High Resolution-Time of Flight-Aerosol Mass Spectrometer (HR-ToF-AMS) at Manav Rachna International University, Faridabad, Haryana located ~40 km downwind of Delhi during Jan-March, 2018. Black carbon concentration was measured using Aethalometer at all three sites. Unit mass resolution (UMR) and high resolution (HR) data analysis were performed on AMS and ACSM mass spectra to calculate organics, nitrate, sulfate and chloride concentrations. Positive Matrix Factorization (PMF) (Paatero and Tapper, 1994) of organic mass spectra was performed by applying multilinear engine (ME-2) algorithm using Sofi (Source finder) for identifying sources of OA.</p>


2006 ◽  
Vol 270 (1) ◽  
pp. 43-46 ◽  
Author(s):  
F. Lopes ◽  
C. R. Appoloni ◽  
V. F. Nascimento ◽  
F. L. Melquiades ◽  
L. C. Almeida

Sign in / Sign up

Export Citation Format

Share Document