Rapid structural and chemical characterization of ternary phase diagrams using synchrotron radiation

2003 ◽  
Vol 18 (10) ◽  
pp. 2522-2527 ◽  
Author(s):  
E. D. Specht ◽  
A. Rar ◽  
G. M. Pharr ◽  
E. P. George ◽  
P. Zschack ◽  
...  

A technique based on synchrotron radiation was developed that allows for rapid structural and chemical characterization of ternary alloys over a wide range of composition. The technique was applied to isothermal sections of the Cr–Fe–Ni system grown on Al2O3(0001) sapphire substrates by sequential deposition of layers of graded.thickness followed by annealing to interdiffuse the elements. A film spanning the Cr–Fe–Ni ternary system was measured in 4 h at a resolution of 2 at.% by rastering the sample under a focused beam of synchrotron radiation while simultaneously measuring the diffraction pattern with a charge-coupled device detector to determine crystallographic phases, texture, and lattice parameters and also measuring the x-ray fluorescence with an energy-dispersive detector to determine elemental composition. Maps of phase composition and lattice parameter as a function of composition for several annealing treatments were found to be consistent with equilibrium values. The technique will be useful in combinatorial materials design.

Author(s):  
Nguyen Hong Nam ◽  
Le Gia Thanh Truc ◽  
Khuong Duy Anh ◽  
Laurent Van De Steene

Agricultural and forest residues are potential sources of renewable energy in various countries. However, the difference in characteristics of biomass resources presents challenges for energy conversion processes which often require feedstocks that are physically and chemically consistent. This study presented a complete and comprehensive database of characteristics of a wide range of agricultural and forest residues. Moisture, bulk density, calorific value, proximate and elemental compositions, as well as cellulose, hemicellulose, and lignin compositions of a wide range of biomass residues were analyzed. The major impacts of the variability in biomass compositions to biochemical and thermochemical processes were also discussed.


1998 ◽  
Vol 69 (12) ◽  
pp. 4054-4060 ◽  
Author(s):  
L. M. Logory ◽  
D. R. Farley ◽  
A. D. Conder ◽  
E. A. Belli ◽  
P. M. Bell ◽  
...  

1999 ◽  
Vol 38 (1) ◽  
pp. 29 ◽  
Author(s):  
Luca Poletto ◽  
Alessio Boscolo ◽  
Giuseppe Tondello

1994 ◽  
Vol 72 (3) ◽  
pp. 928-935 ◽  
Author(s):  
Paul G. Mezey

A density domain (DD) is the formal body enclosed by a molecular isodensity contour (MIDCO) surface. Individual nuclear neighborhoods and various formal molecular fragments can be regarded as fuzzy moieties of electron densities, dominated by one or several nuclei. Such a fuzzy fragment involves a whole range of density values, hence it cannot be described by a single MIDCO, but it can be represented by a sequence of density domains. Within the chemically important range of density values, there are only a finite number of topologically different bodies of density domains. In the Density Domain Approach, chemical bonding is described by the interfacing and mutual interpenetration of local fuzzy charge density clouds. The bonding between fragments of a molecule is characterized by a finite sequence of density domains within a wide range of density values and by the correponding sequence of topological patterns of the mutual interpenetration of these fragments. In earlier works, the DD approach was advocated as an alternative to the conventional "skeletal model" of chemical bonding. The classically motivated line diagrams as representatives of bonding are replaced by the pattern of interpenetration of fuzzy fragment bodies at various density thresholds. In this study, novel DD relations are described, suitable for a quantum chemical characterization of functional groups, the local shape properties of such groups, and their contributions to global molecular shape.


2006 ◽  
Vol 45 ◽  
pp. 2483-2488
Author(s):  
L. Pablos ◽  
Maria Elena Villafuerte-Castrejón ◽  
A. Ibarra-Palos ◽  
J. Ocotlán-Flores ◽  
R. Sato ◽  
...  

PbBi4Ti4O15 belongs to the bismuth oxide layers family discovered by Aurivillius more than 50 years ago. In the last few years, there has been considerable interest in layered oxides exhibiting ferroelectric, piezoelectric and other related properties due to their wide range of application in technical devices. In the present work the PbBi4Ti4O15 solid solution formed with Eu3+ was synthesized by coprecipitation method and solubility limit was found. All compounds were characterized by scanning electron microscopy, density measurements and X-ray diffraction. The variation of lattice parameter with the Eu3+ concentration was obtained. Raman spectroscopy was carried out in order to determine the Eu3+ site in the lattice. Thermal analysis (thermogravimetry and differencial scanning calorimetry) results are also presented.


1994 ◽  
Vol 23 (1) ◽  
pp. 3-6 ◽  
Author(s):  
Sz. Török ◽  
Gy. Faigel ◽  
K. W. Jones ◽  
M. L. Rivers ◽  
S. R. Sutton ◽  
...  

2008 ◽  
Vol 2008 (1) ◽  
pp. 407-412 ◽  
Author(s):  
Hans V. Jensen ◽  
Jørn H. S. Andersen ◽  
Per S. Daling ◽  
Elisabeth Nøst

ABSTRACT Introducing regular aerial surveillance in 1981 and near-real time radar satellite detection services in 1992, Norway has obtained a substantial experience in multi sensor oil spill remote sensing. Since 2001 NOFO has been a driving force in the development and utilization of ship-based sensors for short to medium range oil spill detection, supplementing airborne and satellite remote sensing. During the NOFO Oil On Water Exercise in 2006 two satellites, four aircraft, one helicopter and two ships carrying wide range of sensors provided a unique opportunity to assess and compare remote sensing field data synchronized with ground-truth sampling from three sampling MOB-boats. The sampling boats were equipped for doing oil slick thickness measurements and physical-chemical characterization of the surface oil properties. A new vessel-based dispersant application system was field tested executing dispersant treatment of two oil slicks while supported by live infrared video transmitted to the vessel from helicopter. The success of this experiment was documented by extensive monitoring and characterization of the surface oil and the dispersed oil plume during and after the dispersant treatment. This guiding technique, in using aerial forward looking IR-video live transmission from helicopter and remote sensing aircraft, has been practiced later during a recent accidental oil spill on the Norwegian continental shelf. To utilize multiple remote sensors operationally from a response vessel, it is necessary to compare signatures from different sensors in near real time. This paper describes core elements of the remote sensing and ground-truth monitoring during oil on water exercises in recent years, lessons learned and how NOFO will continue developing remote sensing operations related to oil spill combating in reduced visibility and light conditions.


Separations ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 168
Author(s):  
Xin Chen ◽  
Patrick C. Bailey ◽  
Clarissa Yang ◽  
Bryant Hiraki ◽  
Michael J. Oldham ◽  
...  

Aerosol constituent yields have been reported from a wide range of electronic nicotine delivery systems. No comprehensive study has been published on the aerosol constituents generated from the JUUL system. Targeted analyses of 53 aerosol constituents from the four JUUL products currently on the US market (Virginia Tobacco and Menthol flavored e-liquids in both 5.0% and 3.0% nicotine concentration by weight) was performed using non-intense and intense puffing regimens. All measurements were conducted by an ISO 17025 accredited contract research organization. JUUL product aerosol constituents were compared to published values for the 3R4F research cigarette and IQOS Regular and Menthol heated tobacco products. Across the four JUUL products and two puffing regimes, only 10/53 analytes were quantifiable, including only two carbonyls (known propylene glycol or glycerol degradants). The remaining analytes were primary ingredients, nicotine degradants and water. Average analyte reductions (excluding primary ingredients and water) for all four JUUL system aerosols tested were greater than 98% lower than 3R4F mainstream smoke, and greater than 88% lower than IQOS aerosol. In summary, chemical characterization and evaluation of JUUL product aerosols demonstrates a significant reduction in toxicants when compared to mainstream cigarette smoke from 3R4F reference cigarettes or aerosols from IQOS-heated tobacco products.


1998 ◽  
Vol 64 (2) ◽  
pp. 742-747 ◽  
Author(s):  
H. Saida ◽  
N. Ytow ◽  
H. Seki

ABSTRACT The Gram stain method was applied to the photometric characterization of aquatic bacterial populations with a charge-coupled device camera and an image analyzer. Escherichia coli andBacillus subtilis were used as standards of typical gram-negative and gram-positive bacteria, respectively. A mounting agent to obtain clear images of Gram-stained bacteria on Nuclepore membrane filters was developed. The bacterial stainability by the Gram stain was indicated by the Gram stain index (GSI), which was applicable not only to the dichotomous classification of bacteria but also to the characterization of cell wall structure. The GSI spectra of natural bacterial populations in water with various levels of eutrophication showed a distinct profile, suggesting possible staining specificity that indicates the presence of a particular bacterial population in the aquatic environment.


Sign in / Sign up

Export Citation Format

Share Document