Response of a Multidegree-of-Freedom System of Variable Coefficients to Random Excitation

Author(s):  
J. Szopa
1973 ◽  
Vol 40 (2) ◽  
pp. 422-428 ◽  
Author(s):  
F. Y. M. Wan

A direct time-domain method is used to analyze the titled problem. Special attention is paid to a system characterized by a general second-order equation with variable coefficients. The equation of flapping motion of a rigid rotor blade advancing in atmospheric turbulence belongs to this class. Steady-state mean-square response to ideal white noise and to exponentially correlated excitation is obtained by a perturbation series solution in a stiffness parameter. An upperbound of the same is derived. Explicit solution for the correlation matrix is obtained by the two-variable expansion method. Specialized to the rotor blade problem, the results have led to some new information concerning the blade behavior in a certain range of rotating speed. They have also served as useful check cases for computer programs developed for more general problems. Higher-order equations and their applications are also discussed.


2003 ◽  
Vol 3 (1) ◽  
pp. 45-58 ◽  
Author(s):  
Dejan Bojović

Abstract In this paper we consider the first initial boundary-value problem for the heat equation with variable coefficients in a domain (0; 1)x(0; 1)x(0; T]. We assume that the solution of the problem and the coefficients of the equation belong to the corresponding anisotropic Sobolev spaces. Convergence rate estimate which is consistent with the smoothness of the data is obtained.


2018 ◽  
pp. 44-47
Author(s):  
F.J. Тurayev

In this paper, mathematical model of nonlinear vibration problems with fluid flows through pipelines have been developed. Using the Bubnov–Galerkin method for the boundary conditions, the resulting nonlinear integro-differential equations with partial derivatives are reduced to solving systems of nonlinear ordinary integro-differential equations with both constant and variable coefficients as functions of time.A system of algebraic equations is obtained according to numerical method for the unknowns. The influence of the singularity of heredity kernels on the vibrations of structures possessing viscoelastic properties is numerically investigated.It was found that the determination of the effect of viscoelastic properties of the construction material on vibrations of the pipeline with a flowing liquid requires applying weakly singular hereditary kernels with an Abel type singularity.


1991 ◽  
Vol 24 (6) ◽  
pp. 9-16 ◽  
Author(s):  
P. J. Ossenbruggen ◽  
H. Spanjers ◽  
H. Aspegren ◽  
A. Klapwijk

A series of batch tests were performed to study the competition for oxygen by Nitrosomonas and Nitrobacter in the nitrification of ammonia in activated sludge. Oxygen uptake rate (OUR) and dynamic (compartment) models describing the process are proposed and tested. The OUR model is described by a Monod relationship and the biogradation process by a set of first order nonlinear differential equations with variable coefficients. The results show a mechanistic model and ten reaction rates are sufficient to capture the interactive behavior of the nitrification process. Methods for model specification, calibrating, and testing the model and the design of additional experiments are described.


Sign in / Sign up

Export Citation Format

Share Document