scholarly journals Variations in the Lengths of Fusiform Cambial Cells and Vessel Elements in Kalopanax pictus

1999 ◽  
Vol 84 (5) ◽  
pp. 621-632 ◽  
Author(s):  
P KITIN
IAWA Journal ◽  
2001 ◽  
Vol 22 (1) ◽  
pp. 15-28 ◽  
Author(s):  
Peter Kitin ◽  
Yuzou Sano ◽  
Ryo Funada

A resin-casting method with subsequent scanning electron microscopy (SEM) was used to examine the three-dimensional (3-D) shapes of cells and the cell walls of cambium and differentiating xylem. Glutaraldehyde- fixed and dehydrated specimens were embedded in polystyrene and then organic material was removed by digestion with acidic solutions or enzymes. The acidic solutions used for treatment were sulphuric acid and a mixture of acetic acid and hydrogen peroxide and the enzymes used for treatment were pectinase and cellulase, with a final treatment with sodium hypochlorite. Both methods could be used for studies of the differentiation of cambial cells; however, digestion with enzymes allowed better preservation of the 3-D organisation of the tissue. Negative replicas of inner surfaces of cell walls of differentiating vessel elements revealed the sequential stages of the development of bordered pits and perforation plates. Future bordered pits at the early stages of the differentiation of cell walls were demarcated by the accumulation of organic material between adjacent pit membranes. Subsequent deposition of cell wall material resulted in formation of pit cavities and the rims of perforation plates.


IAWA Journal ◽  
1996 ◽  
Vol 17 (3) ◽  
pp. 311-318 ◽  
Author(s):  
K. S. Rao ◽  
Kishore S. Rajput ◽  
T. Srinivas

Structural variations in cambium, xylem and phloem collected from main trunks of Sterculia colorata, S. alata, S. villosa, S. urens and S. foetida growing in the South Dangs forests were studied. In all five species, the cambium was storied with variations in the length of fusiform cambial cells. Compared to other species S. foetida had the longest and S. urens the shortest fusiform cambial cells. Cambial rays in all the species were compound (tall) and heterocellular with sheath cells. Their height and width were maximal in S. foetida and in S. villosa respectively. In all the species the storied nature of fusiform cambial cells was maintained in derivative cells that developed into sieve tube elements; vessel elements and axial parenchyma of both phloem and xylem. However, fibres of phloem and xylem were nonstoried. The dimensions of elements in phloem and xylem varied among the species. The variation in the mean length of sieve tube elements and vessel members coincided with that of fusiform cambial cells.


IAWA Journal ◽  
2006 ◽  
Vol 27 (4) ◽  
pp. 409-418
Author(s):  
Guillermo Angeles ◽  
Gerard C. Adams ◽  
Melodie L. Putnam

The anatomy of an unusual canker on Fraxinus spp. was investigated with elastomer microcasts. The canker was caused by a new fungal disease, 'Coin Canker of Ash', affecting nursery stock in Northeastern North America. Cankers on bark surfaces were remarkably round and coppercolored. Diseased areas of stems had non-parallel orientations of axial parenchyma tissue as well as of the rays, vessel elements and fibers in contrast to healthy areas. Bark in diseased areas of stems was eroded beneath the surface and a callus was produced along the margins of damage that filled the cavity of eroded tissue. Diseased areas had large aggregates of sclereids compared to healthy areas. Ray initials in diseased areas of the stem were shorter, multiseriate and 3–10 or more cells in width compared to the longer uni- and biseriate initials in healthy areas. Wood in diseased areas had circular vessels in tangential view due to a change in the shapes of individual vessel elements, compared to parallel and straight vessels in healthy areas. Individual elements became spindleshaped and gave rise to zigzag vessels. The fungal pathogen, Neofabraea alba, appeared to alter the way in which cambial cells differentiated.


IAWA Journal ◽  
2003 ◽  
Vol 24 (3) ◽  
pp. 211-222 ◽  
Author(s):  
Peter Kitin ◽  
Yuzou Sano ◽  
Ryo Funada

We examined the three-dimensional (3-D) structure of differentiating xylem in a hardwood tree, Kalopanax pictus, by confocallaser scanning microscopy (CLSM) using relatively thick, hand-cut histological sections. 3-D studies of plant tissues by mechanical serial sectioning with a microtome are very time-con suming. By contrast, the preparation of samples for CLSM is easier and the 3-D structure of intact tissue is preserved during optical sectioning. We obtained extended-focus images of the surface of specimens and these images resembled the stereographic images obtained by scanning electron microscopy. In addition , we observed radial files of cambial derivative cells at various stages of differenti ation and the internal structure along the 'z' axis of specimens on serial optical sections. We analysed the developmental changes in the morphology of cambial derivat ive cells, for example, the 3-D shape and arrangement of cells, the readjustment of the position of cells, and the development of secondary walls, pits and perforation plates. Our results showed that the arrangement of the differentiating xylem cells mirror s that of the cambial cell s. Deviations from the longitudinal orientation of vessel elements were specified by similar patterns of orientation of fusiform and ray cambial cells. The development of vessel elements progressed more rapidly than that of other xylem elements. When secondary walls with bordered pits and perforation plates with membranes were present in vessel elements and their expansion ceased, no secondary wall formation was detected in adjacent ray cells. The delay in secondary wall formation by the ray parenchyma cells, as compared to that by vessel elements, might facilitate the readju stment of the position of cells in the developing xylem tissue that is a consequence of the considerable expan sion of the vessel elements.


IAWA Journal ◽  
2003 ◽  
Vol 24 (4) ◽  
pp. 411-420 ◽  
Author(s):  
Kishore S. Rajput ◽  
K.S. Rao

Development of cambial variant and xylem structure were studied in the stem of Cocculus hirsutus (Menispermaceae). In the early stages of stem development several collateral vascular bundles are joined by interfascicular cambium resulting in the formation of a complete cambial cylinder. After functioning for two to three years the cambial ring ceases its activity. Subsequently a second ring of cambium is formed from the innermost cortical parenchyma cells. These parenchyma cells undergo periclinal divisions to give rise to cells that become lignified, abaxially, and cambial cells, adaxially. The cambial cells divide periclinally giving rise to individual vascular bundles with xylem and phloem. Later the cambium in each bundle is joined by interfascicular cambium. Subsequent cambia develop similarly resulting in the formation of successive rings of xylem and phloem. During the leafless condition, all the cambial rings are dormant, and flanked by mature xylem and phloem elements. With the sprouting of new leaves, either the existing outermost cambium reactivates or an entire new ring of cambium develops. The xylem is diffuseporous with indistinct growth rings. It is composed of fibre-tracheids, tracheids, vessel elements, libriform fibres, and parenchyma cells. Xylem rays are multiseriate, compound and heterocellular. Deformed libriform fibres and vessel elements commonly occur among the ray cells in all the successive rings of xylem. The length of fibres and the height and width of xylem rays increase gradually from the centre towards the periphery of the stem.


1981 ◽  
Vol 92 (5-6) ◽  
pp. 397-411
Author(s):  
Sr. Avita ◽  
J. A. Inamdar
Keyword(s):  

Planta Medica ◽  
2013 ◽  
Vol 79 (13) ◽  
Author(s):  
S Yang ◽  
T Quang ◽  
N Ngan ◽  
H Yoon ◽  
Y Kim ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Keita Matsuoka ◽  
Ryosuke Sato ◽  
Yuki Matsukura ◽  
Yoshiki Kawajiri ◽  
Hiromi Iino ◽  
...  

AbstractANAC071 and its homolog ANAC096 are plant-specific transcription factors required for the initiation of cell division during wound healing in incised Arabidopsis flowering stems and Arabidopsis hypocotyl grafts; however, the mechanism remains mostly unknown. In this study, we showed that wound-induced cambium formation involved cell proliferation and the promoter activity of TDR/PXY (cambium-related gene) in the incised stem. Prior to the wound-induced cambium formation, both ANAC071 and ANAC096 were expressed at these sites. anac-multiple mutants significantly decreased wound-induced cambium formation in the incised stems and suppressed the conversion from mesophyll cells to cambial cells in an ectopic vascular cell induction culture system (VISUAL). Our results suggest that ANAC071 and ANAC096 are redundantly involved in the process of “cambialization”, the conversion from differentiated cells to cambial cells, and these cambium-like cells proliferate and provide cells in wound tissue during the tissue-reunion process.


Author(s):  
Anna Wilczek-Ponce ◽  
Wiesław Włoch ◽  
Muhammad Iqbal

AbstractRadial growth has long been a subject of interest in tree biology research. Recent studies have brought a significant change in the understanding of some basic processes characteristic to the vascular cambium, a meristem that produces secondary vascular tissues (phloem and xylem) in woody plants. A new hypothesis regarding the mechanism of intrusive growth of the cambial initials, which has been ratified by studies of the arrangement of cambial cells, negates the influence of this apical cell growth on the expansion of the cambial circumference. Instead, it suggests that the tip of the elongating cambial initial intrudes between the tangential (periclinal) walls, rather than the radial (anticlinal) walls, of the initial(s) and its(their) derivative(s) lying ahead of the elongating cell tip. The new concept also explains the hitherto obscure mechanism of the cell event called ‘elimination of initials’. This article evaluates these new concepts of the cambial cell dynamics and offers a new interpretation for some curious events occurring in the cambial meristem in relation to the radial growth in woody plants.


IAWA Journal ◽  
1996 ◽  
Vol 17 (4) ◽  
pp. 431-444 ◽  
Author(s):  
Mitsuo Suzuki ◽  
Kiyotsugu Yoda ◽  
Hitoshi Suzuki

Initiation of vessel formation and vessel maturation indicated by secondary wall deposition have been compared in eleven deciduous broadleaved tree species. In ring-porous species the first vessel element formation in the current growth ring was initiated two to six weeks prior to the onset of leaf expansion, and secondary wall deposition on the vessel elements was completed from one week before to three weeks after leaf expansion. In diffuse-porous species, the first vessel element formation was initiated two to seven weeks after the onset of leaf expansion, and secondary wall deposition was completed four to nine weeks after leaf expansion. These results suggest that early maturation of the first vessel elements in the ring-porous species will serve for water conduction in early spring. On the contrary, the late maturation of the first vessel elements in the diffuse-porous species indicates that no new functional vessels exist at the time of the leaf expansion.


Sign in / Sign up

Export Citation Format

Share Document