ANALYSIS OF CAMBIUM AND DIFFERENTIATING VESSEL ELEMENTS IN KALOPANAX PICTUS USING RESIN CAST REPLICAS

IAWA Journal ◽  
2001 ◽  
Vol 22 (1) ◽  
pp. 15-28 ◽  
Author(s):  
Peter Kitin ◽  
Yuzou Sano ◽  
Ryo Funada

A resin-casting method with subsequent scanning electron microscopy (SEM) was used to examine the three-dimensional (3-D) shapes of cells and the cell walls of cambium and differentiating xylem. Glutaraldehyde- fixed and dehydrated specimens were embedded in polystyrene and then organic material was removed by digestion with acidic solutions or enzymes. The acidic solutions used for treatment were sulphuric acid and a mixture of acetic acid and hydrogen peroxide and the enzymes used for treatment were pectinase and cellulase, with a final treatment with sodium hypochlorite. Both methods could be used for studies of the differentiation of cambial cells; however, digestion with enzymes allowed better preservation of the 3-D organisation of the tissue. Negative replicas of inner surfaces of cell walls of differentiating vessel elements revealed the sequential stages of the development of bordered pits and perforation plates. Future bordered pits at the early stages of the differentiation of cell walls were demarcated by the accumulation of organic material between adjacent pit membranes. Subsequent deposition of cell wall material resulted in formation of pit cavities and the rims of perforation plates.

IAWA Journal ◽  
2003 ◽  
Vol 24 (3) ◽  
pp. 211-222 ◽  
Author(s):  
Peter Kitin ◽  
Yuzou Sano ◽  
Ryo Funada

We examined the three-dimensional (3-D) structure of differentiating xylem in a hardwood tree, Kalopanax pictus, by confocallaser scanning microscopy (CLSM) using relatively thick, hand-cut histological sections. 3-D studies of plant tissues by mechanical serial sectioning with a microtome are very time-con suming. By contrast, the preparation of samples for CLSM is easier and the 3-D structure of intact tissue is preserved during optical sectioning. We obtained extended-focus images of the surface of specimens and these images resembled the stereographic images obtained by scanning electron microscopy. In addition , we observed radial files of cambial derivative cells at various stages of differenti ation and the internal structure along the 'z' axis of specimens on serial optical sections. We analysed the developmental changes in the morphology of cambial derivat ive cells, for example, the 3-D shape and arrangement of cells, the readjustment of the position of cells, and the development of secondary walls, pits and perforation plates. Our results showed that the arrangement of the differentiating xylem cells mirror s that of the cambial cell s. Deviations from the longitudinal orientation of vessel elements were specified by similar patterns of orientation of fusiform and ray cambial cells. The development of vessel elements progressed more rapidly than that of other xylem elements. When secondary walls with bordered pits and perforation plates with membranes were present in vessel elements and their expansion ceased, no secondary wall formation was detected in adjacent ray cells. The delay in secondary wall formation by the ray parenchyma cells, as compared to that by vessel elements, might facilitate the readju stment of the position of cells in the developing xylem tissue that is a consequence of the considerable expan sion of the vessel elements.


1999 ◽  
Vol 47 (2) ◽  
pp. 277 ◽  
Author(s):  
Sherwin Carlquist ◽  
Edward L. Schneider ◽  
Kevin F. Kenneally

Using scanning electron microscopy (SEM), vessels are demonstrated for roots and rhizomes of Platyzoma microphyllum R.Br. Because vessels are not in simple linear series, but have tips in contact with tips of other vessels, vessel elements may have several end walls, and each of these can bear a perforation plate. Vessels in roots are narrow, but have wide perforations. In rhizomes, perforation plates have a wide range of morphology. The most notable of these involves displacement and, frequently, fusion of adjacent bars of secondary wall material, so that large perforations tend to alternate with narrow perforations or with two or three fused bars. Porose pit membranes are present in narrower perforations. The presence of wide perforations achieved by means of bar displacement characterises not merely Platyzoma, but other ferns as well: Microgramma and Phlebodium. These three genera of ferns experience marked fluctuation in water availability, so that not only are vessels of potential value for rapid conduction during brief periods of water availability, but the presence of perforation plates conducive to such rapid conduction is of theoretical selective advantage as well. Stelar fibres that bear crystals on external surfaces of walls are reported for roots of Platyzoma. Such fibres have not been reported hitherto for ferns.


IAWA Journal ◽  
1993 ◽  
Vol 14 (4) ◽  
pp. 391-412 ◽  
Author(s):  
Chen Bao Liang ◽  
Pieter Baas ◽  
Elisabeth A. Wheeler ◽  
Wu Shuming

The wood anatomy offive genera of Magnoliaceae (59 native species, 2 introduced species) of China is described. Although the wood anatomy of this family is rather homogeneous, it is possible to identify most specimens to genus. Magnoliaceae wood from China is characterised by diffuse-porosity, scalariform to opposite vessel wall pitting, scalariform perforations with few bars or in some Magnolia species simple perforations, ground tissue fibres with distinctly to minutely bordered pits, marginal parenchyma and heterocellular rays mostly with one marginal row of square/upright cells. Intervessel and vessel-parenchyma pits are almost exclusively opposite in the Liriodendroideae; they are almost exclusively scalariform in the Magnolioideae, except for Magnolia section Rhytidospermum in which pits are predominantly opposite. Although the wood anatomical characters more or less overlap between Magnolia and Manglietia, these genera are wood anatomically distinguishable. Wood anatomy is similar in the evergreen species of Magnolia and Michelia. Kmeria is the only genus in which crystals were observed. Taxa from the tropics to subtropics tend to have longer and wider vessel elements, and a lower vessel frequency than those from temperate provenances; oil cells in rays mostly occur in the taxa from tropical and subtropical provenances. Simple perforation plates are mostly present in the temperate taxa. Counter to trends for the dicotyledons at large, helical thickenings are more common in tropical species than in temperate species, and, when present, are usually not distinct in deciduous species.


2005 ◽  
Vol 83 (11) ◽  
pp. 1443-1456 ◽  
Author(s):  
Jeffrey G. Duckett ◽  
Roberto Ligrone

This article describes the results of a light and electron microscopic study of the fungal endophytes and vascular anatomy in the rhizomes and gametophytes of Tmesipteris and Psilotum. The parenchymatous cortical cells of the rhizomes and subterranean gametophytes of Tmesipteris and Psilotum contain intracellular aseptate glomeromycotean fungi resembling the “Paris-type” of arbuscular mycorrhizas found in seed plants. The fungi differentiate into multinucleate vesicles and hyphal coils, both containing bacteria-like structures and accumulating lipid masses and crystals as they age. After several cycles of infection in the same cell, degenerate hyphae form amorphous masses encased by host wall material. Nearly identical host–fungus cytology between the autotrophic sporophytes and the heterotrophic gametophytes suggests that these psilophyte associations are exploitative of the fungus in both generations. Following the description of tracheids nearly 60 years ago in the gametophytes of Psilotum, vascular elements are described for the first time in the haploid generation of Tmesipteris. Close similarities between the water- and food-conducting elements in both generations, viz. vessel elements with scalariform perforation plates and sieve cells with refractive spherules and lacking callose at all stages in their develoment, add support to the homologous theory of the alternations of generations. Mitochondrial aggregations, cross-linked by small electron-opaque rods, are common in the stelar cells of both generations and appear to be a unique feature of the psilophyte clade.


IAWA Journal ◽  
1985 ◽  
Vol 6 (1) ◽  
pp. 3-22 ◽  
Author(s):  
William C. Dickison ◽  
Kristen D. Phend

Woods of over 40 species representing nine genera of Styracaceae were studied. Features present in most taxa include growth rings, diffuse porosity, combinations of both solitaries and pore multiples, exclusively scalariform perforation plates, opposite to alternate intervessel pitting, imperforate tracheary elements with indistinctly bordered pits, both uniseriate and multiseriate heterocellular rays, and axial parenchyma distributed as a combination of diffuse, diffuse-in-aggregates, and scanty. Prismatic crystals occur in species of the genera Bruinsmia, Halesia, and Styrax, and silica is present in a few Neotropical species of Styrax. The characteristic solitary pore distribution and high scalariform perforation plate bar number of Huodendron are of potential evolutionary significance. The xylem of Lissocarpa differs from the Styracaceae in possessing more highly evolved vessel elements with both simple and scalariform perforations and prominently banded axial parenchyma. The occurrence of simple perforation plates in the wider, earlywood vessel elements, along with an increased pore frequency and decreased vessel element length, in Styrax platanifolius and S. texanus is documented. Both species inhabit seasonally dry habitats of the southwestern United States, thus supporting similar specialisations observed in other plants growing in xerophytic conditions. The apparent variation in perforation plate condition within different geographic varieties of S. officinalis is discussed. Significant correlations of wood anatomical characters and latitude of provenance are present among species of Styracaceae. Increasing latitude is strongly correlated with increased pore and multiseriate ray frequency, and decreased vessel element length and wall thickness. Increasing latitude is less strongly correlated with an occurrence of decreased pore diameter, increased bar number per perforation plate, increased fibre-tracheid and intervessel pit diameter, and increased frequency of uniseriate rays. Weak correlations are also evident between increasing latitude and shorter ray height and narrower, shorter, and thinner-walled fibre-tracheids.


IAWA Journal ◽  
1984 ◽  
Vol 5 (3) ◽  
pp. 217-223 ◽  
Author(s):  
A. F. Muhammad

The sequential development of vessel elements in the primary and secondary xylem of Comptonia peregrina (L.) Coult. was studied. Scalariform, transitional, simple and scalaroid perforation plates were common in this species. The structural variation of these plates was interpreted on the basis of some developmental factors such as: I) width of the ceJl face and the distance between helical gyres; 2) type and distribution of secondary wall material in the form of strand, sheet or both; 3) localised and differential deposition of wall material and bar breakdown. These factors may work alone or in combination to determine the perforation plate structure.


IAWA Journal ◽  
1997 ◽  
Vol 18 (1) ◽  
pp. 3-12 ◽  
Author(s):  
Sherwin Carlquist

Qualitative and quantitative data are given for wood anatomy of three species of Pentaphragma (Pentaphragmataceae); the woods of the three species are very similar. Pentaphragma is rayless, but eventually develops rays in at least one of the species studied. This is interpreted as related to secondary woodiness or upright habit within a predominantly herbaceous phylad. The vessel elements of Pentaphragma have features universally interpreted as primitive in dicotyledons: scalariform perforation plates with numerous bars; pit membrane remnants in perforations; scalariform lateral wall pitting; the genus also has fiber-tracheids with prominently bordered pits. These character states accord with the basal position in Campanulales accorded Pentaphragmataceae by Cosner et al. (1992), and suggests that order may have begun with more numerous primitive features than generally recognized. The presence of occasional scalariform perforation plates, often aberrant, in secondary xylem of families of Asterales sensu lato - Campanulaceae, Pentaphragmataceae, Valerianaceae, and even Asteraceae (e.g., certain Lactuceae) - can be attributed to paedomorphosis, extending these plates into secondary xylem from primary xylem. Raylessness in Pentaphragma can be described in terms of secondary woodiness or paedomorphosis. The fact that fiber-tracheids are shorter than vessel elements in Pentaphragma is believed related to raylessness also, because some fiber-tracheids are produced from 'potential' ray areas.


Author(s):  
Béatrice Satiat-Jeunemaitre ◽  
Chris Hawes

The comprehension of the molecular architecture of plant cell walls is one of the best examples in cell biology which illustrates how developments in microscopy have extended the frontiers of a topic. Indeed from the first electron microscope observation of cell walls it has become apparent that our understanding of wall structure has advanced hand in hand with improvements in the technology of specimen preparation for electron microscopy. Cell walls are sub-cellular compartments outside the peripheral plasma membrane, the construction of which depends on a complex cellular biosynthetic and secretory activity (1). They are composed of interwoven polymers, synthesised independently, which together perform a number of varied functions. Biochemical studies have provided us with much data on the varied molecular composition of plant cell walls. However, the detailed intermolecular relationships and the three dimensional arrangement of the polymers in situ remains a mystery. The difficulty in establishing a general molecular model for plant cell walls is also complicated by the vast diversity in wall composition among plant species.


Author(s):  
Christopher J. Arthurs ◽  
Nan Xiao ◽  
Philippe Moireau ◽  
Tobias Schaeffter ◽  
C. Alberto Figueroa

AbstractA major challenge in constructing three dimensional patient specific hemodynamic models is the calibration of model parameters to match patient data on flow, pressure, wall motion, etc. acquired in the clinic. Current workflows are manual and time-consuming. This work presents a flexible computational framework for model parameter estimation in cardiovascular flows that relies on the following fundamental contributions. (i) A Reduced-Order Unscented Kalman Filter (ROUKF) model for data assimilation for wall material and simple lumped parameter network (LPN) boundary condition model parameters. (ii) A constrained least squares augmentation (ROUKF-CLS) for more complex LPNs. (iii) A “Netlist” implementation, supporting easy filtering of parameters in such complex LPNs. The ROUKF algorithm is demonstrated using non-invasive patient-specific data on anatomy, flow and pressure from a healthy volunteer. The ROUKF-CLS algorithm is demonstrated using synthetic data on a coronary LPN. The methods described in this paper have been implemented as part of the CRIMSON hemodynamics software package.


Sign in / Sign up

Export Citation Format

Share Document