Selective Accumulation of the Endoplasmic Reticulum–Golgi Intermediate Compartment Induced by the Antitumor Drug KRN5500

2000 ◽  
Vol 256 (2) ◽  
pp. 468-479 ◽  
Author(s):  
Masaru Kamishohara ◽  
Susan Kenney ◽  
Renee Domergue ◽  
David T. Vistica ◽  
Edward A. Sausville
2021 ◽  
Author(s):  
Janine McCaughey ◽  
Judith M. Mantell ◽  
Chris R. Neal ◽  
Kate Heesom ◽  
David J. Stephens

AbstractComplex machinery is required to drive secretory cargo export from the endoplasmic reticulum. In vertebrates, this includes transport and Golgi organization protein 1 (TANGO1), encoded by the Mia3 gene. Here, using genome engineering of human cells light microscopy, secretion assays, and proteomics, we show loss of Mia3/TANGO1 results in formation of numerous vesicles and a loss of early secretory pathway integrity. This restricts secretion not only of large proteins like procollagens but of all types of secretory cargo. Our data shows that Mia3/TANGO1 constrains the propensity of COPII to form vesicles promoting instead the formation of the ER-Golgi intermediate compartment. Thus, Mia3/TANGO1 facilities the secretion of complex and high volume cargoes from vertebrate cells.


2003 ◽  
Vol 100 (8) ◽  
pp. 4586-4591 ◽  
Author(s):  
L. Orci ◽  
M. Ravazzola ◽  
G. J. Mack ◽  
C. Barlowe ◽  
S. Otte

1999 ◽  
Vol 274 (46) ◽  
pp. 32539-32542 ◽  
Author(s):  
Micheline Moussalli ◽  
Steven W. Pipe ◽  
Hans-Peter Hauri ◽  
William C. Nichols ◽  
David Ginsburg ◽  
...  

2003 ◽  
Vol 14 (3) ◽  
pp. 889-902 ◽  
Author(s):  
Mariano Stornaiuolo ◽  
Lavinia V. Lotti ◽  
Nica Borgese ◽  
Maria-Rosaria Torrisi ◽  
Giovanna Mottola ◽  
...  

Many endoplasmic reticulum (ER) proteins maintain their residence by dynamic retrieval from downstream compartments of the secretory pathway. In previous work we compared the retrieval process mediated by the two signals, KKMP and KDEL, by appending them to the same neutral reporter protein, CD8, and found that the two signals determine a different steady-state localization of the reporter. CD8-K (the KDEL-bearing form) was restricted mainly to the ER, whereas CD8-E19 (the KKMP-bearing form) was distributed also to the intermediate compartment and Golgi complex. To investigate whether this different steady-state distribution reflects a difference in exit rates from the ER and/or in retrieval, we have now followed the first steps of export of the two constructs from the ER and their trafficking between ER and Golgi complex. Contrary to expectation, we find that CD8-K is efficiently recruited into transport vesicles, whereas CD8-E19 is not. Thus, the more restricted ER localization of CD8-K must be explained by a more efficient retrieval to the ER. Moreover, because most of ER resident CD8-K is not O-glycosylated but almost all CD8-E19 is, the results suggest that CD8-K is retrieved from the intermediate compartment, before reaching the Golgi, whereO-glycosylation begins. These results illustrate how different retrieval signals determine different trafficking patterns and pose novel questions on the underlying molecular mechanisms.


2001 ◽  
Vol 154 (4) ◽  
pp. 731-740 ◽  
Author(s):  
Philippe Cupers ◽  
Mustapha Bentahir ◽  
Katleen Craessaerts ◽  
Isabelle Orlans ◽  
Hugo Vanderstichele ◽  
...  

We investigated the relationship between PS1 and γ-secretase processing of amyloid precursor protein (APP) in primary cultures of neurons. Increasing the amount of APP at the cell surface or towards endosomes did not significantly affect PS1-dependent γ-secretase cleavage, although little PS1 is present in those subcellular compartments. In contrast, almost no γ-secretase processing was observed when holo-APP or APP-C99, a direct substrate for γ-secretase, were specifically retained in the endoplasmic reticulum (ER) by a double lysine retention motif. Nevertheless, APP-C99-dilysine (KK) colocalized with PS1 in the ER. In contrast, APP-C99 did not colocalize with PS1, but was efficiently processed by PS1-dependent γ-secretase. APP-C99 resides in a compartment that is negative for ER, intermediate compartment, and Golgi marker proteins. We conclude that γ-secretase cleavage of APP-C99 occurs in a specialized subcellular compartment where little or no PS1 is detected. This suggests that at least one other factor than PS1, located downstream of the ER, is required for the γ-cleavage of APP-C99. In agreement, we found that intracellular γ-secretase processing of APP-C99-KK both at the γ40 and the γ42 site could be restored partially after brefeldin A treatment. Our data confirm the “spatial paradox” and raise several questions regarding the PS1 is γ-secretase hypothesis.


2017 ◽  
Vol 114 (37) ◽  
pp. E7707-E7716 ◽  
Author(s):  
Michael G. Hanna ◽  
Samuel Block ◽  
E. B. Frankel ◽  
Feng Hou ◽  
Adam Johnson ◽  
...  

The conserved coat protein complex II (COPII) mediates the initial steps of secretory protein trafficking by assembling onto subdomains of the endoplasmic reticulum (ER) in two layers to generate cargo-laden transport carriers that ultimately fuse with an adjacent ER–Golgi intermediate compartment (ERGIC). Here, we demonstrate that Trk-fused gene (TFG) binds directly to the inner layer of the COPII coat. Specifically, the TFG C terminus interacts with Sec23 through a shared interface with the outer COPII coat and the cargo receptor Tango1/cTAGE5. Our findings indicate that TFG binding to Sec23 outcompetes these other associations in a concentration-dependent manner and ultimately promotes outer coat dissociation. Additionally, we demonstrate that TFG tethers vesicles harboring the inner COPII coat, which contributes to their clustering between the ER and ERGIC in cells. Together, our studies define a mechanism by which COPII transport carriers are retained locally at the ER/ERGIC interface after outer coat disassembly, which is a prerequisite for fusion with ERGIC membranes.


2000 ◽  
Vol 11 (8) ◽  
pp. 2719-2731 ◽  
Author(s):  
Martin Steegmaier ◽  
Viola Oorschot ◽  
Judith Klumperman ◽  
Richard H. Scheller

The endoplasmic reticulum (ER) consists of subcompartments that have distinct protein constituents, morphological appearances, and functions. To understand the mechanisms that regulate the intricate and dynamic organization of the endoplasmic reticulum, it is important to identify and characterize the molecular machinery involved in the assembly and maintenance of the different subcompartments. Here we report that syntaxin 17 is abundantly expressed in steroidogenic cell types and specifically localizes to smooth membranes of the ER. By immunoprecipitation analyses, syntaxin 17 exists in complexes with a syntaxin regulatory protein, rsly1, and/or two intermediate compartment SNARE proteins, rsec22b and rbet1. Furthermore, we found that syntaxin 17 is anchored to the smooth endoplasmic reticulum through an unusual mechanism, requiring two adjacent hydrophobic domains near its carboxyl terminus. Converging lines of evidence indicate that syntaxin 17 functions in a vesicle-trafficking step to the smooth-surfaced tubular ER membranes that are abundant in steroidogenic cells.


2011 ◽  
Vol 438 (1) ◽  
pp. 133-142 ◽  
Author(s):  
Nikolay V. Kukushkin ◽  
Dominic S. Alonzi ◽  
Raymond A. Dwek ◽  
Terry D. Butters

During quality control in the ER (endoplasmic reticulum), nascent glycoproteins are deglucosylated by ER glucosidases I and II. In the post-ER compartments, glycoprotein endo-α-mannosidase provides an alternative route for deglucosylation. Previous evidence suggests that endomannosidase non-selectively deglucosylates glycoproteins that escape quality control in the ER, facilitating secretion of aberrantly folded as well as normal glycoproteins. In the present study, we employed FOS (free oligosaccharides) released from degrading glycoproteins as biomarkers of ERAD (ER-associated degradation), allowing us to gain a global rather than single protein-centred view of ERAD. Glucosidase inhibition was used to discriminate between glucosidase- and endomannosidase-mediated ERAD pathways. Endomannosidase expression was manipulated in CHO (Chinese-hamster ovary)-K1 cells, naturally lacking a functional version of the enzyme, and HEK (human embryonic kidney)-293T cells. Endomannosidase was shown to decrease the levels of total FOS, suggesting decreased rates of ERAD. However, following pharmacological inhibition of ER glucosidases I and II, endomannosidase expression resulted in a partial switch between glucosylated FOS, released from ER-confined glycoproteins, to deglucosylated FOS, released from endomannosidase-processed glycoproteins transported from the Golgi/ERGIC (ER/Golgi intermediate compartment) to the ER. Using this approach, we have identified a previously unknown pathway of glycoprotein flow, undetectable by the commonly employed methods, in which secretory cargo is targeted back to the ER after being processed by endomannosidase.


Sign in / Sign up

Export Citation Format

Share Document