free oligosaccharides
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 13)

H-INDEX

24
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Wei-Chien Weng ◽  
Hun-En Liao ◽  
Shih-Pei Huang ◽  
Shang-Ting Tsai ◽  
Hsu-Chen Hsu ◽  
...  

Free oligosaccharides are abundant macronutrients in milk and involved in prebiotic functions and antiadhesive binding of pathogenic bacteria to colonocytes. Despite the importance of these oligosaccharides, structural determination of oligosaccharides is challenging, and milk oligosaccharide biosynthetic pathways remain unclear. Oligosaccharide structures are conventionally determined using a combination of chemical reactions, exoglycosidase digestion, nuclear magnetic resonance spectroscopy, and mass spectrometry. Most reported free oligosaccharides are highly abundant and have lactose at the reducing end, and current oligosaccharide biosynthetic pathways in human milk are proposed based on these oligosaccharides. In this study, a new mass spectrometry technique, which can identify linkages, anomericities, and stereoisomers, was applied to determine the structures of free oligosaccharides in human, bovine, and caprine milk. Oligosaccharides that do not follow the current biosynthetic pathways and are not synthesized by any discovered enzymes were found, indicating the existence of undiscovered biosynthetic pathways and enzymes. New biosynthetic pathways were proposed.


Metabolites ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 662
Author(s):  
Anne Vuholm Sunds ◽  
Ida Schwartz Roland ◽  
Ulrik Kræmer Sundekilde ◽  
Martin Nørmark Thesbjerg ◽  
Randall Robinson ◽  
...  

Little is known about the extent of variation and activity of naturally occurring milk glycosidases and their potential to degrade milk glycans. A multi-omics approach was used to investigate the relationship between glycosidases and important bioactive compounds such as free oligosaccharides and O-linked glycans in bovine milk. Using 4-methylumbelliferone (4-MU) assays activities of eight indigenous glycosidases were determined, and by mass spectrometry and 1H NMR spectroscopy various substrates and metabolite products were quantified in a subset of milk samples from eight native North European cattle breeds. The results showed a clear variation in glycosidase activities among the native breeds. Interestingly, negative correlations between some glycosidases including β-galactosidase, N-acetyl-β-d-glucosaminidase, certain oligosaccharide isomers as well as O-linked glycans of κ-casein were revealed. Further, a positive correlation was found for free fucose content and α-fucosidase activity (r = 0.37, p-value < 0.001) indicating cleavage of fucosylated glycans in milk at room temperature. The results obtained suggest that milk glycosidases might partially degrade valuable glycans, which would result in lower recovery of glycans and thus represent a loss for the dairy ingredients industry if these activities are pronounced.


Biochemistry ◽  
2021 ◽  
Author(s):  
Naoki Fujitani ◽  
Shigeru Ariki ◽  
Yoshihiro Hasegawa ◽  
Yasuaki Uehara ◽  
Atsushi Saito ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Makoto Katsube ◽  
Natsuki Ebara ◽  
Megumi Maeda ◽  
Yoshinobu Kimura

During endoplasmic reticulum (ER)-associated degradation, free N-glycans (FNGs) are produced from misfolded nascent glycoproteins via the combination of the cytosolic peptide N-glycanase (cPNGase) and endo-β-N-acetylglucosaminidase (ENGase) in the plant cytosol. The resulting high-mannose type (HMT)-FNGs, which carry one GlcNAc residue at the reducing end (GN1-FNGs), are ubiquitously found in developing plant cells. In a previous study, we found that HMT-FNGs assisted in protein folding and inhibited β-amyloid fibril formation, suggesting a possible biofunction of FNGs involved in the protein folding system. However, whether these HMT-FNGs occur in the ER, an organelle involved in protein folding, remained unclear. On the contrary, we also reported the presence of plant complex type (PCT)-GN1-FNGs, which carry the Lewisa epitope at the non-reducing end, indicating that these FNGs had been fully processed in the Golgi apparatus. Since plant ENGase was active toward HMT-N-glycans but not PCT-N-glycans that carry β1-2xylosyl and/or α1-3 fucosyl residue(s), these PCT-GN1-FNGs did not appear to be produced from fully processed glycoproteins that harbored PCT-N-glycans via ENGase activity. Interestingly, PCT-GN1-FNGs were found in the extracellular space, suggesting that HMT-GN1-FNGs formed in the cytosol might be transported back to the ER and processed in the Golgi apparatus through the protein secretion pathway. As the first step in elucidating the production mechanism of PCT-GN1-FNGs, we analyzed the structures of free oligosaccharides in plant microsomes and proved that HMT-FNGs (Man9-7GlcNAc1 and Man9-8GlcNAc2) could be found in microsomes, which almost consist of the ER compartments.


Dairy ◽  
2020 ◽  
Vol 1 (3) ◽  
pp. 284-296
Author(s):  
Erinn M. Quinn ◽  
Tom F. O’Callaghan ◽  
John T. Tobin ◽  
John Paul Murphy ◽  
Katie Sugrue ◽  
...  

Numerous bioactive components exist in human milk including free oligosaccharides, which represent some of the most important, and provide numerous health benefits to the neonate. Considering the demonstrated value of these compounds, much interest lies in characterising structurally similar oligosaccharides in the dairy industry. In this study, the impacts of days post-parturition and parity of the cows on the oligosaccharide and lactose profiles of their milk were evaluated. Colostrum and milk samples were obtained from 18 cows 1–5 days after parturition. Three distinct phases were identified using multivariate analysis: colostrum (day 0), transitional milk (days 1–2) and mature milk (days 3–5). LS-tetrasaccharide c, lacto-N-neotetraose, disialyllacto-N-tetraose, 3’-sial-N-acetyllactosamine, 3’-sialyllactose, lacto-N-neohexaose and disialyllactose were found to be highly affiliated with colostrum. Notably, levels of lactose were at their lowest concentration in the colostrum and substantially increased 1-day post-parturition. The cow’s parity was also shown to have a significant effect on the oligosaccharide profile, with first lactation cows containing more disialyllacto-N-tetraose, 6’-sialyllactose and LS-tetrasaccharide compared to cows in their second or third parity. Overall, this study identifies key changes in oligosaccharide and lactose content that clearly distinguish colostrum from transitional and mature milk and may facilitate the collection of specific streams with divergent biological functions.


Metabolites ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 433
Author(s):  
Byeong Gwan Cho ◽  
Wenjing Peng ◽  
Yehia Mechref

Glycosylation is one of the most common and complex post-translational modifications of proteins. However, there are other carbohydrates such as free oligosaccharides and glycosphingolipids-glycans that are associated with important biological and clinical roles. To analyze these molecules using liquid chromatography coupled with mass spectrometry (LC-MS), the permethylation approach was utilized. Although permethylation is a commonly utilized glycan derivatization technique, separation of permethylated glycans released from glycosphingolipid (GSL) by LC-MS has never been previously demonstrated. Here, a nanoflow porous graphitized carbon (PGC) column coupled with a high-resolution mass spectrometer was used to achieve isomeric separation of these permethylated glycans. We demonstrate the separation of free reducing end and reduced end O-glycans, free oligosaccharides derived from human milk, and GSL glycans derived from the MDA-MB-231BR cancer cell line using PGC-LC-MS.


Biomolecules ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1383
Author(s):  
Nobuaki Miura ◽  
Hisatoshi Hanamatsu ◽  
Ikuko Yokota ◽  
Kazue Okada ◽  
Jun-Ichi Furukawa ◽  
...  

Glycans present extraordinary structural diversity commensurate with their involvement in numerous fundamental cellular processes including growth, differentiation, and morphogenesis. Unlike linear DNA and protein sequences, glycans have heterogeneous structures that differ in composition, branching, linkage, and anomericity. These differences pose a challenge to developing useful software for glycomic analysis. To overcome this problem, we developed the novel Toolbox Accelerating Glycomics (TAG) program. TAG consists of three units: ‘TAG List’ creates a glycan list that is used for database searching in TAG Expression; ‘TAG Expression’ automatically annotates and quantifies glycan signals and draws graphs; and ‘TAG Pathway’ maps the obtained expression information to biosynthetic pathways. Herein, we discuss the concepts, outline the TAG process, and demonstrate its potential using glycomic expression profile data from Chinese hamster ovary (CHO) cells and mutants lacking a functional Npc1 gene (Npc1 knockout (KO) CHO cells). TAG not only drastically reduced the amount of time and labor needed for glycomic analysis but also detected and quantified more glycans than manual analysis. Although this study was limited to the analysis of N-glycans and free oligosaccharides, the glycomic platform will be expanded to facilitate the analysis of O-glycans and glycans of glycosphingolipids.


2020 ◽  
Vol 49 (1) ◽  
pp. 85-92
Author(s):  
Iqbal Jalaludin ◽  
Amirul Husna Sudin ◽  
Dharshini Elangovan ◽  
Hussein M. Al-Bajalan ◽  
Nur Maisarah Sarizan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document