scholarly journals TFG facilitates outer coat disassembly on COPII transport carriers to promote tethering and fusion with ER–Golgi intermediate compartments

2017 ◽  
Vol 114 (37) ◽  
pp. E7707-E7716 ◽  
Author(s):  
Michael G. Hanna ◽  
Samuel Block ◽  
E. B. Frankel ◽  
Feng Hou ◽  
Adam Johnson ◽  
...  

The conserved coat protein complex II (COPII) mediates the initial steps of secretory protein trafficking by assembling onto subdomains of the endoplasmic reticulum (ER) in two layers to generate cargo-laden transport carriers that ultimately fuse with an adjacent ER–Golgi intermediate compartment (ERGIC). Here, we demonstrate that Trk-fused gene (TFG) binds directly to the inner layer of the COPII coat. Specifically, the TFG C terminus interacts with Sec23 through a shared interface with the outer COPII coat and the cargo receptor Tango1/cTAGE5. Our findings indicate that TFG binding to Sec23 outcompetes these other associations in a concentration-dependent manner and ultimately promotes outer coat dissociation. Additionally, we demonstrate that TFG tethers vesicles harboring the inner COPII coat, which contributes to their clustering between the ER and ERGIC in cells. Together, our studies define a mechanism by which COPII transport carriers are retained locally at the ER/ERGIC interface after outer coat disassembly, which is a prerequisite for fusion with ERGIC membranes.

2021 ◽  
Author(s):  
William Kasberg ◽  
Peter Luong ◽  
Michael Hanna ◽  
Kayla Minushkin ◽  
Annabelle Tsao ◽  
...  

Abstract Coat protein complex II (COPII) plays an integral role in the packaging of secretory cargoes within membrane-enclosed transport carriers that leave the endoplasmic reticulum (ER) from discrete membrane subdomains. Lipid bilayer remodeling necessary for this process is driven initially by membrane penetration of the coat subunit Sar1 and further stabilized by assembly of a multi-layer complex of several COPII proteins. However, the relative contributions of these distinct factors to transport carrier formation and protein trafficking remain unclear. Here, we demonstrate that anterograde cargo transport from the ER continues in the absence of Sar1, although the unconventional carriers that form fail to efficiently deliver their contents to subsequent compartments in the secretory pathway. Instead, cargoes accumulate immediately adjacent to the perinuclear Golgi under these conditions, together with components of the COPII coat. Our findings highlight new mechanisms by which COPII promotes transport carrier biogenesis and strongly suggests that the Sar1 GTPase plays a critical role in transport carrier uncoating ahead of membrane fusion and secretory cargo delivery at acceptor compartments.


1997 ◽  
Vol 273 (3) ◽  
pp. H1082-H1089 ◽  
Author(s):  
P. Lahouratate ◽  
J. Guibert ◽  
J. F. Faivre

Cyclic ADP-ribose (cADPR), an endogenous metabolite of beta-NAD+, activates Ca2+ release from endoplasmic reticulum in sea urchin eggs via the ryanodine receptor (RyR) pathway. A similar role has been proposed in cardiac sarcoplasmic reticulum (SR), although this remains controversial. We therefore investigated the ability of cADPR to induce Ca2+ release from canine cardiac SR microsomes using fluo 3 to monitor extravesicular Ca2+ concentration. We found that cADPR induced Ca2+ release in a concentration-dependent manner, whereas neither its precursor, NAD+, nor its metabolite, ADP-ribose, elicited a consistent effect. In addition, an additive effect on calcium release between cADPR and 9-Me-7-Br-eudistomin-D (MBED), an activator of RyR, was found as well as no cross-desensitization between cADPR and MBED. Specific blockers of the RyR did not abolish the cADPR-induced Ca2+ release. These results provide evidence for cADPR-induced Ca2+ release from dog cardiac SR via a novel mechanism which is independent of RyR activation.


2009 ◽  
Vol 29 (6) ◽  
pp. 477-487
Author(s):  
Pochuen Shieh ◽  
Chih-Hung Lee ◽  
Ng Ling Yi ◽  
Chung-Ren Jan

The effect of the cardiovascular drug carvedilol on cytosolic free Ca2+ concentrations ([Ca 2+]i) and viability was examined in Statens Seruminstitut rabbit cornea (SIRC) corneal epithelial cells. [Ca2+]i and cell viability were measured using the fluorescent dyes fura-2 and 4-[3-[4-lodophenyl]-2-4(4-nitrophenyl)-2H-5-tetrazolio-1,3-benzene disulfonate] (WST-1), respectively. Carvedilol at concentrations between 1 and 30 μM increased [Ca 2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. Carvedilol induced Mn2+ quench of fura-2 fluorescence implicating Ca2+ influx. The Ca2+ influx was inhibited by suppression of protein kinase C activity. In Ca2+-free medium, after pretreatment with 1 μM thapsigargin (an endoplasmic reticulum Ca 2+ pump inhibitor), carvedilol-induced [Ca2+]i rise was reduced; and conversely, carvedilol pretreatment inhibited a major part of thapsigargin-induced [Ca 2+]i rise. Addition of the phospholipase C inhibitor 1-[6-[[17 beta-3-methoxyestra-1,3,5(10)-trien-17-yl]amino] hexyl]-1H-pyrrole-2,5-dione (U73122; 2 μM) did not change carvedilol-induced [Ca2+]i rise. At concentrations between 5 and 70 μM, carvedilol killed cells in a concentration-dependent manner. The cytotoxic effect of 20 μM carvedilol was not reversed by prechelating cytosolic Ca2+ with BAPTA/AM. Apoptosis was induced by 5—70 μM carvedilol. Collectively, in SIRC corneal epithelial cells, carvedilol-induced [Ca2+]i rises by causing Ca2+ release from the endoplasmic reticulum in a phospholipase C-independent manner, and Ca 2+ influx via protein kinase C-regulated Ca2+ channels. Carvedilol-caused cytotoxicity was mediated by Ca2+-independent apoptosis in a concentration-dependent manner.


2009 ◽  
Vol 28 (5) ◽  
pp. 301-308 ◽  
Author(s):  
LN Kuo ◽  
CJ Huang ◽  
YC Fang ◽  
CC Huang ◽  
JL Wang ◽  
...  

The effect of thimerosal on cytosolic free Ca2+ concentrations ([Ca2+]i ) in human oral cancer cells (OC2) is unclear. This study explored whether thimerosal changed basal [Ca2+]i levels in suspended OC2 cells using fura-2. Thimerosal at concentrations between 1and 50 μM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca 2+. Thimerosal-induced Ca2+ influx was not blocked by L-type Ca2+ entry inhibitors and protein kinase C modulators (phorbol 12-myristate 13-acetate [PMA] and GF109203X). In Ca2+-free medium, 50 μM thimerosal failed to induce a [Ca2+]i rise after pretreatment with thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor). Inhibition of phospholipase C with U73122 did not change thimerosal-induced [Ca2+]i rises. At concentrations between 5 and 10 μM, thimerosal killed cells in a concentration-dependent manner. The cytotoxic effect of 8 μM thimerosal was potentiated by prechelating cytosolic Ca2+ with the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetate/acetomethyl (BAPTA/ AM). Flow cytometry data suggested that 1—7 μM thimerosal-induced apoptosis in a concentration-dependent manner. Collectively, in OC2 cells, thimerosal-induced [Ca2+]i rises by causing phospholipase C-independent Ca2+ release from the endoplasmic reticulum and Ca2+ influx through non—L-type Ca2+ channels. Thimerosal killed cells in a concentration-dependent manner through apoptosis.


2015 ◽  
Vol 34 (11) ◽  
pp. 1096-1105
Author(s):  
H-H Cheng ◽  
C-T Chou ◽  
T-K Sun ◽  
W-Z Liang ◽  
J-S Cheng ◽  
...  

Naproxen is an anti-inflammatory drug that affects cellular calcium ion (Ca2+) homeostasis and viability in different cells. This study explored the effect of naproxen on [Ca2+]i and viability in Madin-Darby canine kidney cells (MDCK) canine renal tubular cells. At concentrations between 50 μM and 300 μM, naproxen induced [Ca2+]i rises in a concentration-dependent manner. This Ca2+ signal was reduced partly when extracellular Ca2+ was removed. The Ca2+ signal was inhibited by a Ca2+ channel blocker nifedipine but not by store-operated Ca2+ channel inhibitors (econazole and SKF96365), a protein kinase C (PKC) activator phorbol 12-myristate 13-acetate, and a PKC inhibitor GF109203X. In Ca2+-free medium, pretreatment with 2,5-di-tert-butylhydroquinone or thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ pumps, partly inhibited naproxen-induced Ca2+ signal. Inhibition of phospholipase C with U73122 did not alter naproxen-evoked [Ca2+]i rises. At concentrations between 15 μM and 30 μM, naproxen killed cells in a concentration-dependent manner, which was not reversed by prechelating cytosolic Ca2+ with the acetoxymethyl ester of 1,2-bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid acetoxymethyl. Annexin V/propidium iodide staining data suggest that naproxen induced apoptosis. Together, in MDCK renal tubular cells, naproxen induced [Ca2+]i rises by inducing Ca2+ release from multiple stores that included the endoplasmic reticulum and Ca2+ entry via nifedipine-sensitive Ca2+ channels. Naproxen induced cell death that involved apoptosis.


2008 ◽  
Vol 27 (5) ◽  
pp. 417-424 ◽  
Author(s):  
SI Liu ◽  
HH Cheng ◽  
CJ Huang ◽  
HC Chang ◽  
WC Chen ◽  
...  

The effect of melittin on cytosolic free Ca2+ concentration ([Ca2+]i) and viability is largely unknown. This study examined whether melittin alters Ca2+ levels and causes Ca2+-dependent cell death in Madin-Darby canine kidney (MDCK) cells. [Ca2+]i and cell death were measured using the fluorescent dyes fura-2 and WST-1 respectively. Melittin at concentrations above 0.5 μM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced by 75% by removing extracellular Ca2+. The melittin-induced Ca2+ influx was also implicated by melittin-caused Mn2+ influx. After pretreatment with 1 μM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), melittin-induced Ca2+ release was inhibited; and conversely, melittin pretreatment abolished thapsigargin-induced Ca2+ release. At concentrations of 0.5–20 μM, melittin killed cells in a concentration-dependent manner. The cytotoxic effect of 0.5 μM melittin was nearly completely reversed by prechelating cytosolic Ca2+ with BAPTA. Melittin at 0.5–2 μM caused apoptosis as assessed by flow cytometry of propidium iodide staining. Collectively, in MDCK cells, melittin induced a [Ca2+]i rise by causing Ca2+ release from endoplasmic reticulum and Ca2+ influx from extracellular space. Furthermore, melittin can cause Ca2+-dependent cytotoxicity in a concentration-dependent manner.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xue Lv ◽  
Qianping Zhang ◽  
Bingfei Cheng ◽  
Ying Xin ◽  
Jun Wang ◽  
...  

Ghrelin is a gastric endocrine peptide that has been found to be involved in the process of energy homeostasis and bone physiology in recent years. To explore the effects of ghrelin on endoplasmic reticulum stress (ERS) in MC3T3E1 cells and its possible mechanism, an ERS model was induced by tunicamycin (TM) in the osteoblast line MC3T3E1. TM at 1.5 μg/mL was selected as the experimental concentration found by CCK8 assay. Through the determination of apoptosis, reactive oxygen species production, and endoplasmic reticulum stress-related gene expression, we found that ERS induced by TM can be relieved by ghrelin in a concentration-dependent manner ( P < 0.001 ). Compared with the TM group, ghrelin reduced the expression of ERS-related marker genes induced by TM. Compared with the GSK621 + TM group without ghrelin pretreatment, the mRNA expression of genes in the ghrelin pretreatment group decreased significantly ( P < 0.001 ). The results of protein analysis showed that the levels of BIP, p-AMPK, and cleaved-caspase3 in the TM group increased significantly, while the levels decreased after ghrelin pretreatment. In group GSK621 + TM compared with group GSK621 + ghrelin+TM, ghrelin pretreatment significantly reduced the level of p-AMPK, which is consistent with the trend of the ERS-related proteins BIP and cleaved-caspase3. In conclusion, ghrelin alleviates the ERS induced by TM in a concentration-dependent manner and may or at least partly alleviate the apoptosis induced by ERS in MC3T3E1 cells by inhibiting the phosphorylation of AMPK.


1986 ◽  
Vol 251 (2) ◽  
pp. G223-G229
Author(s):  
W. E. Ghijsen ◽  
C. H. Van Os ◽  
C. W. Heizmann ◽  
H. Murer

The Ca2+ pump in rat duodenal epithelium is studied as ATP-dependent Ca2+ uptake in a vesicle preparation with a 9-fold purification in Na+-K+-ATPase activity and a 20-fold purification of Na+-K+-ATPase with respect to an endoplasmic reticulum marker. ATP-dependent Ca2+ uptake is reduced by 60% by digitonin treatment of the vesicles, whereas high-affinity Ca2+-ATPase is stimulated by the same treatment. Different methods to deplete membrane preparations of calmodulin have been used. In EDTA osmotically shocked vesicles, calmodulin stimulated ATP-dependent Ca2+ transport up to 100% in a Ca2+ concentration-dependent manner. The duodenal Ca2+ pump is inhibited by calmodulin antagonists only at low Ca2+ concentrations and in membranes not depleted from calmodulin. Vitamin D-dependent Ca2+-binding protein (Mr = 10,000) in concentrations up to 5 microM did not affect the rate of ATP-dependent Ca2+ transport, either in Ca2+-EGTA-buffered solutions or in EGTA-free solutions. In membrane preparations from vitamin D-deficient rats, the effects of calmodulin and of Ca2+-binding protein were identical to the vitamin D-repleted control preparations. This excludes a specific effect of Ca2+-binding protein and calmodulin in the vitamin D dependency of duodenal Ca2+-ATPase.


2020 ◽  
Vol 295 (31) ◽  
pp. 10677-10688
Author(s):  
Po-Ju Chen ◽  
Diego Zelada ◽  
Dina Cheryne Belhasan ◽  
Mohammed Akaaboune

The maintenance of a high density of the acetylcholine receptor (AChR) is the hallmark of the neuromuscular junction. Muscle-specific anchoring protein (αkap) encoded within the calcium/calmodulin-dependent protein kinase IIα (CAMK2A) gene is essential for the maintenance of AChR clusters both in vivo and in cultured muscle cells. The underlying mechanism by which αkap is maintained and regulated remains unknown. Here, using human cell lines, fluorescence microscopy, and pulldown and immunoblotting assays, we show that α-dystrobrevin (α-dbn), an intracellular component of the dystrophin glycoprotein complex, directly and robustly promotes the stability of αkap in a concentration-dependent manner. Mechanistically, we found that the phosphorylatable tyrosine residues of α-dbn are essential for the stability of α-dbn itself and its interaction with αkap, with substitution of three tyrosine residues in the α-dbn C terminus with phenylalanine compromising the αkap–α-dbn interaction and significantly reducing both αkap and α-dbn accumulation. Moreover, the αkap–α-dbn interaction was critical for αkap accumulation and stability. We also found that the absence of either αkap or α-dbn markedly reduces AChRα accumulation and that overexpression of α-dbn or αkap in cultured muscle cells promotes the formation of large agrin-induced AChR clusters. Collectively, these results indicate that the stability of αkap and α-dbn complex plays an important role in the maintenance of high-level expression of AChRs.


1981 ◽  
Vol 59 (11) ◽  
pp. 1128-1133 ◽  
Author(s):  
A. K. Grover ◽  
C. Y. Kwan ◽  
J. Crankshaw ◽  
E. E. Daniel

Isopycnic centrifugation experiments using sucrose density gradients showed that in digitonin-treated microsomes the distribution of the plasma membrane (PM) marker 5′-nucleotidase was shifted to higher densities. The treatment also caused similar but less pronounced changes in the distribution of protein, the putative endoplasmic reticulum (ER) marker NADPH-dependent cytochrome c reductase, and the inner mitochondrial marker cytochrome c oxidase. Similar experiments using more purified membrane fractions showed that the digitonin treatment led to a comparable increase in the densities of the fractions N1 and N2 previously described as subfractions of plasma membrane and to considerably less increase in the density of the fraction N3B which is enriched in the endoplasmic reticulum and the inner mitochondrial markers. Digitonin inhibited the ATP-dependent Ca uptake by the N1 fraction in a concentration-dependent manner (I50 = 0.3 mg/mL). Digitonin (0.5 mg/mL) inhibited the ATP-dependent azide-insensitive Ca uptake by all the fractions. The results support the hypothesis that (a) N1 and N2 are subfractions of plasma membrane, and (b) ATP-dependent azide-insensitive Ca uptake in rat myometrium is a property of plasma membranes.


Sign in / Sign up

Export Citation Format

Share Document