On the Role of Fe and Co Dopants during the Activation of the VO(HPO4), 0.5 H2O Precursor of the Vanadium Phosphorus Catalyst as Studied byin SituLaser Raman Spectroscopy

1996 ◽  
Vol 163 (2) ◽  
pp. 346-353 ◽  
Author(s):  
M.T. Sananés-Schulz ◽  
F.Ben Abdelouahab ◽  
G.J. Hutchings ◽  
J.C. Volta
Keyword(s):  
2019 ◽  
Vol 64 (1-2) ◽  
pp. 75-82
Author(s):  
F. Nekvapil ◽  
◽  
Cs. Müller Molnár ◽  
S. Tomšić ◽  
S. Cintă Pinzaru ◽  
...  

Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 48
Author(s):  
Ana M. Herrero ◽  
Claudia Ruiz-Capillas

Considerable attention has been paid to emulsion gels (EGs) in recent years due to their interesting applications in food. The aim of this work is to shed light on the role played by chia oil in the technological and structural properties of EGs made from soy protein isolates (SPI) and alginate. Two systems were studied: oil-free SPI gels (SPI/G) and the corresponding SPI EGs (SPI/EG) that contain chia oil. The proximate composition, technological properties (syneresis, pH, color and texture) and structural properties using Raman spectroscopy were determined for SPI/G and SPI/EG. No noticeable (p > 0.05) syneresis was observed in either sample. The pH values were similar (p > 0.05) for SPI/G and SPI/EG, but their texture and color differed significantly depending on the presence of chia oil. SPI/EG featured significantly lower redness and more lightness and yellowness and exhibited greater puncture and gel strengths than SPI/G. Raman spectroscopy revealed significant changes in the protein secondary structure, i.e., higher (p < 0.05) α-helix and lower (p < 0.05) β-sheet, turn and unordered structures, after the incorporation of chia oil to form the corresponding SPI/EG. Apparently, there is a correlation between these structural changes and the textural modifications observed.


Author(s):  
Thomas Beechem ◽  
Samuel Graham

The lifetimes of polar optical phonons are known to affect the electrical and thermal performance of gallium nitride (GaN) based devices. Utilizing the energy-time uncertainty relation, this study investigates these lifetimes using Raman spectroscopy for a series of samples having free carrier concentrations ranging from 1.24e18 to 3e17 cm−3. By measuring across the typical operating temperatures of these devices, the mechanisms responsible for scattering of 5 separate optical modes are elucidated. It is found that phonon-carrier interaction directly determines the lifetime of the polar optical A1(LO) mode while indirectly influencing the modes into which this longitudinal phonon decays, namely, E1 and A1(TO). Thus understanding the entire phonon energy cascade is vital both for management of the so called “hot phonon” effect as well as modeling of carrier-phonon interactions.


Sign in / Sign up

Export Citation Format

Share Document