scholarly journals Stability of a Lyapunov Controller for a Semi-active Structural Control System with Nonlinear Actuator Dynamics

2000 ◽  
Vol 251 (2) ◽  
pp. 940-957 ◽  
Author(s):  
Jeffrey L. Kuehn ◽  
Harold L. Stalford
2016 ◽  
Vol 24 (6) ◽  
pp. 1051-1064 ◽  
Author(s):  
Mehdi Soleymani ◽  
Amir Hossein Abolmasoumi ◽  
Hasanali Bahrami ◽  
Arash Khalatbari-S ◽  
Elham Khoshbin ◽  
...  

Model uncertainties and actuator delays are two factors that degrade the performance of active structural control systems. A new robust control system is proposed for control of an active tuned mass damper (AMD) in a high-rise building. The controller comprises a two-loop sliding model controller in conjunction with a dynamic state predictor. The sliding model controller is responsible for model uncertainties and the state predictor compensates for the time delays due to actuator dynamics and process delay. A reduced model that is validated against experimental data was constructed and equipped with an electro-mechanical AMD system mounted on the top storey. The proposed controller was implemented in the test structure and its performance under seismic disturbances was simulated using a seismic shake table. Moreover, robustness of the proposed controller was examined via variation of the test structure parameters. The shake table test results reveal the effectiveness of the proposed controller at tackling the simulated disturbances in the presence of model uncertainties and input delay.


Author(s):  
Mingxing Fang ◽  
◽  
Lijun Wu ◽  
Jing Cheng ◽  
Youwu Du ◽  
...  

This paper describes an approach for suppressing earthquake-induced vibrations of building structures. The design of the control system is based on the equivalent-input-disturbance approach for improving the vibration rejection performance. A control system configuration with a vibration estimator is described, and a method of designing such a control system that employsΗ∞control is presented. The vibration rejection performance is guaranteed by the control structure, in which an equivalent vibration signal on the control input channel is estimated and directly incorporated into the control input. The validity of our method is demonstrated through simulations.


2008 ◽  
Vol 56 ◽  
pp. 182-187
Author(s):  
Antonio Occhiuzzi

Control algorithms for semi-active structural control system found in the scientific literature often rely on the choice of several parameters included in the control law. The present paper shows the preliminary conclusions of a study aiming to explain the weak dependency of the response reduction associated to semi-active control systems on the particular choice of the control algorithm adopted, provided that the relevant parameters of any control law be properly tuned.


2011 ◽  
Vol 58-60 ◽  
pp. 2446-2449
Author(s):  
Zhi Yong Qu ◽  
Zheng Mao Ye

The purpose of this paper is to develop an approach to improve the tracking characteristics of a single axis shaking table actuation system, which is used in active structural control system. Firstly, the process of constructing analytical model of servo-hydraulic actuation system is presented. The proposed model, in the form of the total shaking table transfer function, accounts for the specific physical characteristics of the single axis shaking table. Due to low natural frequency and small hydraulic actuator damping, the single axis shaking table cannot meet the experimental requirement Therefore, three states feedback and three state feed-forward control algorithm based on pole-assignment principle is applied to extend the acceleration bandwidth. Lastly, the shaking table experiments are tested and the experimental results indicate that the controller is effective and reliable.


Sign in / Sign up

Export Citation Format

Share Document