Identification of amino acid residues of transcription factor AP-2 involved in DNA binding 1 1Edited by M. Yaniv

2000 ◽  
Vol 301 (4) ◽  
pp. 807-816 ◽  
Author(s):  
Miguel Angel Garcı́a ◽  
Mónica Campillos ◽  
Samuel Ogueta ◽  
Fernando Valdivieso ◽  
Jesús Vázquez
2005 ◽  
Vol 25 (3) ◽  
pp. 1003-1012 ◽  
Author(s):  
Naomi Yoshida ◽  
Takehiro Ogata ◽  
Kenji Tanabe ◽  
Songhua Li ◽  
Megumi Nakazato ◽  
...  

ABSTRACT The heterodimeric transcription factor PEBP2/CBF is composed of a DNA-binding subunit, called Runx1, and a non-DNA-binding subunit, called PEBP2β/CBFβ. The Runx1 protein is detected exclusively in the nuclei of most cells and tissues, whereas PEBP2β is located in the cytoplasm. We addressed the mechanism by which PEBP2β localizes to the cytoplasm and found that it is associated with filamin A, an actin-binding protein. Filamin A retains PEBP2β in the cytoplasm, thereby hindering its engagement as a Runx1 partner. The interaction with filamin A is mediated by a region within PEBP2β that includes amino acid residues 68 to 93. The deletion of this region or the repression of filamin A enables PEBP2β to translocate to the nucleus. Based on these observations, we propose that PEBP2β has two distinct domains, a newly defined regulatory domain that interacts with filamin A and the previously identified Runx1-binding domain.


1998 ◽  
Vol 273 (8) ◽  
pp. 4607-4615 ◽  
Author(s):  
Zening He ◽  
Michael Crist ◽  
Hsiao-ching Yen ◽  
Xiaoqun Duan ◽  
Florante A. Quiocho ◽  
...  

2021 ◽  
Author(s):  
Weizheng Liang ◽  
Guipeng Li ◽  
Huanhuan Cui ◽  
Yukai Wang ◽  
Wencheng Wei ◽  
...  

AbstractDifferences in gene expression, which can arise from divergence in cis-regulatory elements or alterations in transcription factors binding specificity, are one of the most important causes of phenotypic diversity during evolution. By protein sequence analysis, we observed high sequence conservation in the DNA binding domain (DBD) of the transcription factor Cdx2 across many vertebrates, whereas three amino acid changes were exclusively found in mouse Cdx2 (mCdx2), suggesting potential positive selection in the mouse lineage. Multi-omics analyses were then carried out to investigate the effects of these changes. Surprisingly, there were no significant functional differences between mCdx2 and its rat homologue (rCdx2), and none of the three amino acid changes had any impact on its function. Finally, we used rat-mouse allodiploid embryonic stem cells (RMES) to study the cis effects of Cdx2-mediated gene regulation between the two rodents. Interestingly, whereas Cdx2 binding is largely divergent between mouse and rat, the transcriptional effect induced by Cdx2 is conserved to a much larger extent.Author summaryOur study 1) represented a first systematic analysis of species-specific adaptation in DNA binding pattern of transcription factor. Although the mouse-specific amino acid changes did not manifest functional impact in our system, several explanations may account for it (See Discussion part for the detail); 2) represented a first study of cis-regulation between two reproductively isolated species by using a novel allodiploid system; 3) demonstrated a higher conservation of transcriptional output than that of DNA binding, suggesting the evolvability/plasticity of the latter; 4) finally provided a rich data resource for Cdx2 mediated regulation, including gene expression, chromatin accessibility and DNA binding etc.


1991 ◽  
Vol 11 (3) ◽  
pp. 1566-1577 ◽  
Author(s):  
S K Thukral ◽  
A Eisen ◽  
E T Young

ADR1 is a transcription factor from Saccharomyces cerevisiae that regulates ADH2 expression through a 22-bp palindromic sequence (UAS1). Size fractionation studies revealed that full-length ADR1 and a truncated ADR1 protein containing the first 229 amino acids, which has the complete DNA-binding domain, ADR1:17-229, exist as monomers in solution. However, two complexes were formed with target DNA-binding sites. UV-cross-linking studies suggested that these two complexes represent one and two molecules of ADR1 bound to DNA. Studies of ADR1 complexes formed with wild-type UAS1, asymmetrically altered UAS1, and one half of UAS1 showed that ADR1 can bind to one half of UAS1 and gives rise to a complex containing one molecule of ADR1. Dimethyl sulfate interference studies were consistent with this interpretation and in addition indicated that purine contact sites in each half of UAS1 were identical. Increasing the distance between the two halves of UAS1 had at most a minor effect of the thermodynamics of formation of the two complexes. These data are more consistent with ADR1 binding as two independent monomers, one to each half of UAS1. However, binding of two ADR1 monomers at UAS1 is apparently essential for transactivation in vivo. Further, we have identified a stretch of 18 amino acid residues amino terminal to the zinc two-finger domains of ADR1 which is essential for DNA-binding activity. Single amino acid substitutions of residues in this region resulted in severely reduced DNA-binding activity.


Biochemistry ◽  
2002 ◽  
Vol 41 (12) ◽  
pp. 3943-3951 ◽  
Author(s):  
Wai-Chung Lam ◽  
Elizabeth H. Z. Thompson ◽  
Olga Potapova ◽  
Xiaojun Chen Sun ◽  
Catherine M. Joyce ◽  
...  

Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 549-562
Author(s):  
Uffe H Mortensen ◽  
Naz Erdeniz ◽  
Qi Feng ◽  
Rodney Rothstein

Abstract Rad52 is a DNA-binding protein that stimulates the annealing of complementary single-stranded DNA. Only the N terminus of Rad52 is evolutionarily conserved; it contains the core activity of the protein, including its DNA-binding activity. To identify amino acid residues that are important for Rad52 function(s), we systematically replaced 76 of 165 amino acid residues in the N terminus with alanine. These substitutions were examined for their effects on the repair of γ-ray-induced DNA damage and on both interchromosomal and direct repeat heteroallelic recombination. This analysis identified five regions that are required for efficient γ-ray damage repair or mitotic recombination. Two regions, I and II, also contain the classic mutations, rad52-2 and rad52-1, respectively. Interestingly, four of the five regions contain mutations that impair the ability to repair γ-ray-induced DNA damage yet still allow mitotic recombinants to be produced at rates that are similar to or higher than those obtained with wild-type strains. In addition, a new class of separation-of-function mutation that is only partially deficient in the repair of γ-ray damage, but exhibits decreased mitotic recombination similar to rad52 null strains, was identified. These results suggest that Rad52 protein acts differently on lesions that occur spontaneously during the cell cycle than on those induced by γ-irradiation.


2017 ◽  
Author(s):  
Michael W. Dorrity ◽  
Josh T. Cuperus ◽  
Jolie A. Carlisle ◽  
Stanley Fields ◽  
Christine Queitsch

AbstractIn Saccharomyces cerevisiae, the decision to mate or invade relies on environmental cues that converge on a shared transcription factor, Ste12. Specificity toward invasion occurs via Ste12 binding cooperatively with the co-factor Tec1. Here, we characterize the in vitro binding preferences of Ste12 to identify a defined spacing and orientation of dimeric sites, one that is common in pheromone-regulated genes. We find that single amino acid changes in the DNA-binding domain of Ste12 can shift the preference of yeast toward either mating or invasion. These mutations define two distinct regions of this domain, suggesting alternative modes of DNA binding for each trait. Some exceptional Ste12 mutants promote hyperinvasion in a Tec1-independent manner; these fail to bind cooperative sites with Tec1 and bind to unusual dimeric Ste12 sites that contain one highly degenerate half site. We propose a model for how activation of invasion genes could have evolved with Ste12 alone.


1994 ◽  
Vol 14 (12) ◽  
pp. 7899-7908
Author(s):  
N Gerwin ◽  
A La Rosée ◽  
F Sauer ◽  
H P Halbritter ◽  
M Neumann ◽  
...  

The Drosophila gap gene knirps (kni) is required for abdominal segmentation. It encodes a steroid/thyroid orphan receptor-type transcription factor which is distributed in a broad band of nuclei in the posterior region of the blastoderm. To identify essential domains of the kni protein (KNI), we cloned and sequenced the DNA encompassing the coding region of nine kni mutant alleles of different strength and kni-homologous genes of related insect species. We also examined in vitro-modified versions of KNI in various assay systems both in vitro and in tissue culture. The results show that KNI contains several functional domains which are arranged in a modular fashion. The N-terminal 185-amino-acid region which includes the DNA-binding domain and a functional nuclear location signal fails to provide kni activity to the embryo. However, a truncated KNI protein that contains additional 47 amino acids exerts rather strong kni activity which is functionally defined by a weak kni mutant phenotype of the embryo. The additional 47-amino-acid stretch includes a transcriptional repressor domain which acts in the context of a heterologous DNA-binding domain of the yeast transcriptional activator GAL4. The different domains of KNI as defined by functional studies are conserved during insect evolution.


Sign in / Sign up

Export Citation Format

Share Document