scholarly journals Identification of amino acid residues of the pheromone-binding domain of the transcription factor TraR that are required for positive control

2009 ◽  
Vol 73 (3) ◽  
pp. 341-351 ◽  
Author(s):  
Esther D. Costa ◽  
Hongbaek Cho ◽  
Stephen C. Winans
2005 ◽  
Vol 25 (3) ◽  
pp. 1003-1012 ◽  
Author(s):  
Naomi Yoshida ◽  
Takehiro Ogata ◽  
Kenji Tanabe ◽  
Songhua Li ◽  
Megumi Nakazato ◽  
...  

ABSTRACT The heterodimeric transcription factor PEBP2/CBF is composed of a DNA-binding subunit, called Runx1, and a non-DNA-binding subunit, called PEBP2β/CBFβ. The Runx1 protein is detected exclusively in the nuclei of most cells and tissues, whereas PEBP2β is located in the cytoplasm. We addressed the mechanism by which PEBP2β localizes to the cytoplasm and found that it is associated with filamin A, an actin-binding protein. Filamin A retains PEBP2β in the cytoplasm, thereby hindering its engagement as a Runx1 partner. The interaction with filamin A is mediated by a region within PEBP2β that includes amino acid residues 68 to 93. The deletion of this region or the repression of filamin A enables PEBP2β to translocate to the nucleus. Based on these observations, we propose that PEBP2β has two distinct domains, a newly defined regulatory domain that interacts with filamin A and the previously identified Runx1-binding domain.


1993 ◽  
Vol 13 (4) ◽  
pp. 2554-2563 ◽  
Author(s):  
D Wojciechowicz ◽  
C F Lu ◽  
J Kurjan ◽  
P N Lipke

alpha-Agglutinin is a cell adhesion glycoprotein expressed on the cell wall of Saccharomyces cerevisiae alpha cells. Binding of alpha-agglutinin to its ligand a-agglutinin, expressed by a cells, mediates cell-cell contact during mating. Analysis of truncations of the 650-amino-acid alpha-agglutinin structural gene AG alpha 1 delineated functional domains of alpha-agglutinin. Removal of the C-terminal hydrophobic sequence allowed efficient secretion of the protein and loss of cell surface attachment. This cell surface anchorage domain was necessary for linkage to a glycosyl phosphatidylinositol anchor. A construct expressing the N-terminal 350 amino acid residues retained full a-agglutinin-binding activity, localizing the binding domain to the N-terminal portion of alpha-agglutinin. A 278-residue N-terminal peptide was inactive; therefore, the binding domain includes residues between 278 and 350. The segment of alpha-agglutinin between amino acid residues 217 and 308 showed significant structural and sequence similarity to a consensus sequence for immunoglobulin superfamily variable-type domains. The similarity of the alpha-agglutinin-binding domain to mammalian cell adhesion proteins suggests that this structure is a highly conserved feature of adhesion proteins in diverse eukaryotes.


Author(s):  
Huichao Wang ◽  
Tong Zhao ◽  
Shuhui Yang ◽  
Liang Zou ◽  
Xiaolong Wang ◽  
...  

Abstract Under the severe situation of the current global epidemic, researchers have been working hard to find a reliable way to suppress the infection of the virus and prevent the spread of the epidemic. Studies have shown that the recognition and binding of human angiotensin-converting enzyme 2 (ACE2) by the receptor-binding domain (BRD) of spike protein on the surface of SARS-CoV-2 is a crucial step for SARS-CoV-2 to invade human receptor cells, and blocking this process can inhibit the virus from invading human normal cells. Plasma treatment can disrupt the structure of the RBD and effectively block the binding process. However, the mechanism by which plasma blocks the recognition and binding between the two is not clear. In this study, reaction process between reactive oxygen species (ROS) in plasma and the molecular model of RBD was simulated using a reactive molecular dynamics method. The results showed that the destruction of RBD molecule by ROS was triggered by hydrogen abstraction reactions. O and OH abstracted H atoms from RBD, while the H atoms of H2O2 and HO2 were abstracted by RBD. The hydrogen abstraction resulted in the breakage of C-H, N-H, O-H and C=O bonds and the formation of C=C, C=N bonds. The addition reaction of OH increased the number of O-H bonds and caused the formation of C-O, N-O and O-H bonds. The dissociation of N-H bonds led to the destruction of the original structure of peptide bonds and amino acid residues, change the type of amino acid residues, and caused the conversion of N-C and N=C, C=O and C-O. The simulation partially elucidated the microscopic mechanism of the interaction between ROS in plasma and the capsid protein of SARS-CoV-2, providing theoretical support for the control of SARS-CoV-2 infection by plasma, a contribution to overcoming the global epidemic problem.


2000 ◽  
Vol 182 (23) ◽  
pp. 6732-6741 ◽  
Author(s):  
Yumiko Takatsuka ◽  
Yoshihiro Yamaguchi ◽  
Minenobu Ono ◽  
Yoshiyuki Kamio

ABSTRACT Lysine decarboxylase (LDC; EC 4.1.1.18 ) from Selenomonas ruminantium comprises two identical monomeric subunits of 43 kDa and has decarboxylating activities toward both l-lysine andl-ornithine with similar Km andVmax values (Y. Takatsuka, M. Onoda, T. Sugiyama, K. Muramoto, T. Tomita, and Y. Kamio, Biosci. Biotechnol. Biochem. 62:1063–1069, 1999). Here, the LDC-encoding gene (ldc) of this bacterium was cloned and characterized. DNA sequencing analysis revealed that the amino acid sequence of S. ruminantium LDC is 35% identical to those of eukaryotic ornithine decarboxylases (ODCs; EC 4.1.1.17 ), including the mouse,Saccharomyces cerevisiae, Neurospora crassa,Trypanosoma brucei, and Caenorhabditis elegansenzymes. In addition, 26 amino acid residues, K69, D88, E94, D134, R154, K169, H197, D233, G235, G236, G237, F238, E274, G276, R277, Y278, K294, Y323, Y331, D332, C360, D361, D364, G387, Y389, and F397 (mouse ODC numbering), all of which are implicated in the formation of the pyridoxal phosphate-binding domain and the substrate-binding domain and in dimer stabilization with the eukaryotic ODCs, were also conserved inS. ruminantium LDC. Computer analysis of the putative secondary structure of S. ruminantium LDC showed that it is approximately 70% identical to that of mouse ODC. We identified five amino acid residues, A44, G45, V46, P54, and S322, within the LDC catalytic domain that confer decarboxylase activities toward bothl-lysine and l-ornithine with a substrate specificity ratio of 0.83 (defined as thek cat/Km ratio obtained with l-ornithine relative to that obtained withl-lysine). We have succeeded in converting S. ruminantium LDC to form with a substrate specificity ratio of 58 (70 times that of wild-type LDC) by constructing a mutant protein, A44V/G45T/V46P/P54D/S322A. In this study, we also showed that G350 is a crucial residue for stabilization of the dimer in S. ruminantium LDC.


2000 ◽  
Vol 301 (4) ◽  
pp. 807-816 ◽  
Author(s):  
Miguel Angel Garcı́a ◽  
Mónica Campillos ◽  
Samuel Ogueta ◽  
Fernando Valdivieso ◽  
Jesús Vázquez

2009 ◽  
Vol 77 (11) ◽  
pp. 5130-5138 ◽  
Author(s):  
Hideki Nagata ◽  
Mio Iwasaki ◽  
Kazuhiko Maeda ◽  
Masae Kuboniwa ◽  
Ei Hashino ◽  
...  

ABSTRACT Porphyromonas gingivalis forms communities with antecedent oral biofilm constituent streptococci. P. gingivalis major fimbriae bind to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) present on the streptococcal surface, and this interaction plays an important role in P. gingivalis colonization. This study identified the binding domain of Streptococcus oralis GAPDH for P. gingivalis fimbriae. S. oralis recombinant GAPDH (rGAPDH) was digested with lysyl endopeptidase. Cleaved fragments of rGAPDH were applied to a reverse-phase high-pressure liquid chromatograph equipped with a C18 column. Each peak was collected; the binding activity toward P. gingivalis recombinant fimbrillin (rFimA) was analyzed with a biomolecular interaction analysis system. The fragment displaying the strongest binding activity was further digested with various proteinases, after which the binding activity of each fragment was measured. The amino acid sequence of each fragment was determined by direct sequencing, mass spectrometric analysis, and amino acid analysis. Amino acid residues 166 to 183 of S. oralis GAPDH exhibited the strongest binding activity toward rFimA; confocal laser scanning microscopy revealed that the synthetic peptide corresponding to amino acid residues 166 to 183 of S. oralis GAPDH (pep166-183, DNFGVVEGLMTTIHAYTG) inhibits S. oralis-P. gingivalis biofilm formation in a dose-dependent manner. Moreover, pep166-183 inhibited interbacterial biofilm formation by several oral streptococci and P. gingivalis strains with different types of FimA. These results indicate that the binding domain of S. oralis GAPDH for P. gingivalis fimbriae exists within the region encompassing amino acid residues 166 to 183 of GAPDH and that pep166-183 may be a potent inhibitor of P. gingivalis colonization in the oral cavity.


2015 ◽  
Vol 112 (35) ◽  
pp. 11042-11047 ◽  
Author(s):  
Christian Monzel ◽  
Gottfried Unden

The C4-dicarboxylate sensor kinase DcuS is membrane integral because of the transmembrane (TM) helices TM1 and TM2. Fumarate-induced movement of the helices was probed in vivo by Cys accessibility scanning at the membrane–water interfaces after activation of DcuS by fumarate at the periplasmic binding site. TM1 was inserted with amino acid residues 21–41 in the membrane in both the fumarate-activated (ON) and inactive (OFF) states. In contrast, TM2 was inserted with residues 181–201 in the OFF state and residues 185–205 in the ON state. Replacement of Trp 185 by an Arg residue caused displacement of TM2 toward the outside of the membrane and a concomitant induction of the ON state. Results from Cys cross-linking of TM2/TM2′ in the DcuS homodimer excluded rotation; thus, data from accessibility changes of TM2 upon activation, either by ligand binding or by mutation of TM2, and cross-linking of TM2 and the connected region in the periplasm suggest a piston-type shift of TM2 by four residues to the periplasm upon activation (or fumarate binding). This mode of function is supported by the suggestion from energetic calculations of two preferred positions for TM2 insertion in the membrane. The shift of TM2 by four residues (or 4–6 Å) toward the periplasm upon activation is complementary to the periplasmic displacement of 3–4 Å of the C-terminal part of the periplasmic ligand-binding domain upon ligand occupancy in the citrate-binding domain in the homologous CitA sensor kinase.


Sign in / Sign up

Export Citation Format

Share Document