Adriamycin-induced Cardiomyocyte and Endothelial Cell Apoptosis: In Vitro and In Vivo Studies

2002 ◽  
Vol 34 (12) ◽  
pp. 1595-1607 ◽  
Author(s):  
S Wu
2003 ◽  
Vol 285 (3) ◽  
pp. C546-C554 ◽  
Author(s):  
Xiaolin Gu ◽  
Azza B. El-Remessy ◽  
Steven E. Brooks ◽  
Mohamed Al-Shabrawey ◽  
Nai-Tsi Tsai ◽  
...  

Hyperoxia exposure induces capillary endothelial cell apoptosis in the developing retina, leading to vaso-obliteration followed by proliferative retinopathy. Previous in vivo studies have shown that endothelial nitric oxide synthase (NOS3) and peroxynitrite are important mediators of the vaso-obliteration. Now we have investigated the relationship between hyperoxia, NOS3, peroxynitrite, and endothelial cell apoptosis by in vitro experiments using bovine retinal endothelial cells (BREC). We found that BREC exposed to 40% oxygen (hyperoxia) for 48 h underwent apoptosis associated with activation of caspase-3 and cleavage of the caspase substrate poly(ADP-ribose) polymerase. Hyperoxia-induced apoptosis was associated with increased formation of nitric oxide, peroxynitrite, and superoxide anion and was blocked by treatment with uric acid, nitro-l-arginine methyl ester, or superoxide dismutase. Analyses of the phosphatidylinositol 3-kinase/Akt kinase survival pathway in cells directly treated with peroxynitrite revealed inhibition of VEGF- and basic FGF-induced activation of Akt kinase. These results suggest that hyperoxia-induced formation of peroxynitrite induces BREC apoptosis by crippling key survival pathways and that blocking peroxynitrite formation prevents apoptosis. These data may have important clinical implications for infants at risk of retinopathy of prematurity.


2002 ◽  
Vol 130 (2) ◽  
pp. 233-240 ◽  
Author(s):  
E. GRUNEBAUM ◽  
M. BLANK ◽  
S. COHEN ◽  
A. AFEK ◽  
J. KOPOLOVIC ◽  
...  

2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Junyao Yang ◽  
Wen Wang ◽  
Qian Wang ◽  
Lingfang Zeng

Background: Histone deacetylase 7 (HDAC7) belongs to class II HDAC family, playing a pivotal role in the maintenance of endothelium integrity. There are 8 splicing variants in mouse HDAC7 mRNAs. Within the 5’ terminal non-coding area of some variants, there exist some short open reading frames (sORFs). Whether these sORFs can be translated and their potential roles in cellular physiology remain unclear. Method and results: Our previous studies suggested that one mouse HDAC7 produced a 7aa peptide from the non-coding area. In this study, we demonstrated that one sORF encoding a 7 amino acids (aa)-peptide could be translated in response to vascular endothelial cell growth factor (VEGF) in vascular progenitor cells (VPCs). The 7aa-peptide (7A) could be phosphorylated at serine residue via MEKK1. Importantly, the phosphorylated 7aa-peptide (7Ap) could transfer the phosphorylation group to the Thr residue of the 14-3-3γ protein in a cell free in-gel buffer system. The in vitro functional analyses revealed that 7A enhanced VEGF-induced VPC migration and differentiation toward endothelial cell (EC) lineage, in which MEKK1 and 14-3-3γ served as upstream kinase and downstream effector respectively. Knockdown of either MEKK1 or 14-3-3γ attenuated VEGF-induced VPC migration and differentiation. Exogenous 7Ap could rescue VEGF effect in MEKK1 but not in 14-3-3γ knockdown cells. The in vivo studies showed that 7A especially 7Ap induced capillary vessel formation within matrigel plug assays, increased re-endothelialization and suppressed neointima formation in the femoral artery injury model, and promoted the foot blood perfusion recovery in the hindlimb ischemia model. Conclusion: These results indicate that the sORFs within the non-coding area can be translated under some circumstances and that the 7aa-peptide may play an important role in cellular processes like migration and differentiation via acting as a phosphorylation carrier. Significance: As a phosphorylation carrier, 7aa possesses therapeutic potentials in tackling angiogenesis related diseases.


1990 ◽  
Vol 259 (4) ◽  
pp. G578-G583 ◽  
Author(s):  
P. R. Kvietys ◽  
M. A. Perry ◽  
T. S. Gaginella ◽  
D. N. Granger

In vivo studies have implicated neutrophils in the gastric mucosal injury produced by intraluminal administration of ethanol. However, in vitro studies indicate that ethanol inhibits various neutrophil functions such as adherence, chemotaxis, and degranulation. The aim of the present study was to assess whether ethanol, at clinically relevant concentrations, is proinflammatory in vivo. Ethanol (0.2, 1.0, 2.0, and 4.0%) was applied to the surface of the cat mesentery, and neutrophil adherence to venules (30 microns diam) and extravasation into the interstitium were quantitated using intravital microscopy. Hemodynamic parameters were also measured (venular diameter, red blood cell velocity, and leukocyte rolling velocity) or calculated (venular blood flow and wall shear stress). In this model ethanol produced a dose-dependent increase in neutrophil adherence and extravasation. The increase in leukocyte-endothelial cell interactions could not be attributed to alterations in hemodynamic factors. Pretreatment of animals with a monoclonal antibody (MoAb IB4) directed to the neutrophil CD11/CD18 adherence complex completely prevented the ethanol-induced neutrophil adherence and extravasation. Pretreatment with a leukotriene B4 (LTB4)-receptor antagonist (SC 41930) or a platelet-activating factor (PAF)-receptor antagonist (WEB 2170) did not alter the ethanol-induced neutrophil-endothelial interactions. We conclude that ethanol is proinflammatory at concentrations which may be achieved in the mucosal interstitium during acute alcohol intoxication. The ethanol-induced leukocyte adherence and extravasation is dependent on the expression of adhesive glycoproteins. The inflammatory mediators, PAF and LTB4, do not appear to play an important role in the leukocyte-endothelial cell interactions initiated by ethanol.


2003 ◽  
Vol 33 (7) ◽  
pp. 713-720 ◽  
Author(s):  
Murielle Girard ◽  
Sylvie Bisser ◽  
Bertrand Courtioux ◽  
Claudine Vermot-Desroches ◽  
Bernard Bouteille ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document