Abstract 2332: The glucose analog 2-DG selectively inhibits AKT and ERK in endothelial cells via interference of N-linked glycosylation and induces endothelial cell apoptosis in vitro and in vivo.

Author(s):  
Kovacs Krisztina ◽  
Christina Decatur ◽  
Jing Yuqi ◽  
Timothy Murray ◽  
Jaime R. Merchan
2015 ◽  
Vol 37 (4) ◽  
pp. 1421-1430 ◽  
Author(s):  
Tao Zhang ◽  
Feng Tian ◽  
Jing Wang ◽  
Jing Jing ◽  
Shan-Shan Zhou ◽  
...  

Background/Aims: Endothelial cell injury and subsequent apoptosis play a key role in the development and pathogenesis of atherosclerosis, which is hallmarked by dysregulated lipid homeostasis, aberrant immunity and inflammation, and plaque-instability-associated coronary occlusion. Nevertheless, our understanding of the mechanisms underlying endothelial cell apoptosis is still limited. MicroRNA-429 (miR-29) is a known cancer suppressor that promotes cancer cell apoptosis. However, it is unknown whether miR-429 may be involved in the development of atherosclerosis through similar mechanisms. We addressed these questions in the current study. Methods: We examined the levels of endothelial cell apoptosis in ApoE (-/-) mice suppled with high-fat diet (HFD), a mouse model for atherosclerosis (simplified as HFD mice). We analyzed the levels of anti-apoptotic protein Bcl-2 and the levels of miR-429 in the purified CD31+ endothelial cells from mouse aorta. Prediction of the binding between miR-429 and 3'-UTR of Bcl-2 mRNA was performed by bioinformatics analyses and confirmed by a dual luciferase reporter assay. The effects of miR-429 were further analyzed in an in vitro model using oxidized low-density lipoprotein (ox-LDL)-treated human aortic endothelial cells (HAECs). Results: HFD mice developed atherosclerosis in 12 weeks, while the control ApoE (-/-) mice that had received normal diet (simplified as NOR mice) did not. HFD mice had significantly lower percentage of endothelial cells and significantly higher percentage of mesenchymal cells in the aorta than NOR mice. Significantly higher levels of endothelial cell apoptosis were detected in HFD mice, resulting from decreases in Bcl-2 protein, but not mRNA. The decreases in Bcl-2 in endothelial cells were due to increased levels of miR-429, which suppressed the translation of Bcl-2 mRNA via 3'-UTR binding. These in vivo findings were reproduced in vitro on ox-LDL-treated HAECs. Conclusion: Atherosclerosis-associated endothelial cell apoptosis may result from down regulation of Bcl-2, through increased miR-429 that binds and suppresses translation of Bcl-2 mRNA.


2017 ◽  
Vol 42 (4) ◽  
pp. 1540-1549 ◽  
Author(s):  
Kaicheng Xu ◽  
Peng Liu ◽  
Yue Zhao

Background/Aims: The injury and apoptotic cell death of endothelial cells hallmark the development of atherosclerosis (AS), characterized by dysregulation of lipid homeostasis, immune responses, and formation of coronary plaques. However, the mechanisms underlying the initiation of endothelial cell apoptosis remain ill-defined. Recent evidence suggests a role of microRNAs in the processes of AS-associated endothelial cell apoptosis. Thus, we studied this question in the current study. Methods: AS was developed in ApoE (-/-) mice suppled with high-fat diet (HFD), compared to ApoE (-/-) mice suppled with normal diet (ND). Mouse endothelial cells were isolated from the aortic arch using flow cytometry based on their expression of Pecam-1. Oxidized low-density lipoprotein (ox-LDL) were used to treat human aortic endothelial cells (HAECs) as an in vitro model for AS. Gene expression was quantified by RT-qPCR and protein levels were analyzed by Western blotting. Apoptosis was evaluated by FITC Annexin V Apoptosis essay and by TUNEL staining. Prediction of the binding between miRNAs and 3'-UTR of mRNA from the target gene was performed by bioinformatics analyses and confirmed by a dual luciferase reporter assay. Results: HFD mice, but not ND mice, developed AS in 12 weeks. Significantly reduced endothelial cell marks and significantly increased mesenchymal cell marks were detected in the aortic arch of the HFD mice, compared to the ND mice. The endothelial cell apoptosis was significantly higher in HFD mice, seemingly due to functional suppression of protein translation of anti-apoptotic Bcl-Xl protein through upregulation of miR-876. Similar results were obtained from in vitro study. Inhibition of miR-876 abolished the effects of ox-LDL-induced apoptotic cell death of HAECs. Conclusion: AS-associated endothelial cell apoptosis may partially result from downregulation of Bcl-Xl, through upregulation of miR-876 that binds and suppresses translation of Bcl-Xl mRNA.


2003 ◽  
Vol 285 (3) ◽  
pp. C546-C554 ◽  
Author(s):  
Xiaolin Gu ◽  
Azza B. El-Remessy ◽  
Steven E. Brooks ◽  
Mohamed Al-Shabrawey ◽  
Nai-Tsi Tsai ◽  
...  

Hyperoxia exposure induces capillary endothelial cell apoptosis in the developing retina, leading to vaso-obliteration followed by proliferative retinopathy. Previous in vivo studies have shown that endothelial nitric oxide synthase (NOS3) and peroxynitrite are important mediators of the vaso-obliteration. Now we have investigated the relationship between hyperoxia, NOS3, peroxynitrite, and endothelial cell apoptosis by in vitro experiments using bovine retinal endothelial cells (BREC). We found that BREC exposed to 40% oxygen (hyperoxia) for 48 h underwent apoptosis associated with activation of caspase-3 and cleavage of the caspase substrate poly(ADP-ribose) polymerase. Hyperoxia-induced apoptosis was associated with increased formation of nitric oxide, peroxynitrite, and superoxide anion and was blocked by treatment with uric acid, nitro-l-arginine methyl ester, or superoxide dismutase. Analyses of the phosphatidylinositol 3-kinase/Akt kinase survival pathway in cells directly treated with peroxynitrite revealed inhibition of VEGF- and basic FGF-induced activation of Akt kinase. These results suggest that hyperoxia-induced formation of peroxynitrite induces BREC apoptosis by crippling key survival pathways and that blocking peroxynitrite formation prevents apoptosis. These data may have important clinical implications for infants at risk of retinopathy of prematurity.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9203
Author(s):  
Shu Wang ◽  
Mingyu Wu ◽  
Ling Qin ◽  
Yaxiang Song ◽  
Ai Peng

Backgroud and Purpose Hyperphosphatemia, which is a high inorganic phosphate (Pi) level in the serum, promotes endothelial cells dysfunction and is associated with cardiovascular diseases in patients with chronic kidney diseases (CKD). However, the underlying mechanism of high Pi-induced endothelia cell apoptosis remains unclear. Methods Human umbilical vein endothelial cells (HUVECs) were treated with normal Pi (1.0 mM) and high Pi (3.0 mM), and then cell apoptosis, abnormal gene expression and potential signaling pathway involvement in simulated hyperphosphatemia were examined using flow cytometry, quantitative PCR (qPCR) and western blot analysis. A two-step 5/6 nephrectomy was carried out to induce CKD and biochemical measurements were taken. Results The rat model of CKD revealed that hyperphosphatemia is correlated with an increased death-domain associated protein (DAXX) expression in endothelial cells. In vitro, high Pi increased the mRNA and protein expression level of DAXX in HUVECs, effects that were reversed by additional phosphonoformic acid treatment. Functionally, high Pi resulted in a significantly increased apoptosis in HUVECs, whereas DAXX knockdown markedly repressed high Pi-induced cell apoptosis, indicating that DAXX mediated high Pi-induced endothelial cell apoptosis. High Pi treatment and DAXX overexpression induced the activation of extracellular regulated protein kinases (ERKs), while DAXX knockdown inhibited high Pi-induced ERKs activation. Finally, we demonstrated that DAXX overexpression induced HUVECs apoptosis in the presence of normal Pi, whereas additional treatment with U0126 (a specific ERK inhibitor) reversed that effect. Conclusion Upregulated DAXX promoted high Pi-induced HUVECs apoptosis by activating ERK signaling and indicated that the DAXX/ERK signaling axis may be served as a potential target for CKD therapy.


Blood ◽  
2002 ◽  
Vol 99 (8) ◽  
pp. 2940-2947 ◽  
Author(s):  
Anne Janin ◽  
Christophe Deschaumes ◽  
Marjan Daneshpouy ◽  
Jérôme Estaquier ◽  
Juliette Micic-Polianski ◽  
...  

Abstract Fas (CD95) is a death receptor involved in apoptosis induction on engagement by Fas ligand (CD95L). Although CD95L-mediated apoptosis has been proposed as a pathogenic mechanism in a wide range of diseases, including graft-versus-host disease, systemic CD95 engagement in mice by agonistic CD95-specific antibodies or by soluble multimeric CD95L (smCD95L), though lethal, has been reported to cause apoptosis only in a limited range of cell types, that is, hepatocytes, hepatic sinusoidal endothelial cells, and lymphocytes. Another member of the tumor necrosis factor (TNF)/CD95L family, TNF-α, induces disseminated vascular endothelial cell apoptosis, which precedes apoptosis of other cell types and lethal multiorgan failure. Here we show that systemic CD95 engagement in vivo by agonistic CD95-specific antibody or smCD95L causes rapid, extensive, and disseminated endothelial cell apoptosis throughout the body, by a mechanism that does not depend on TNF-α. Disseminated endothelial cell apoptosis was also the first detectable lesion in a murine model of acute tissue damage induced by systemic transfer of allogeneic lymphocytes and did not occur when allogeneic lymphocytes were from CD95L-defective mice. Both vascular and additional tissue lesions induced by agonistic CD95-specific antibody, smCD95L, or allogeneic lymphocytes were prevented by treatment with an inhibitor of caspase-8, the upstream caspase coupled to CD95 death signaling. Vascular lesions are likely to play an important role in the pathogenesis of allogeneic immune responses and of other diseases involving circulating CD95L-expressing cells or smCD95L, and the prevention of CD95-mediated death signaling in endothelial cells may have therapeutic implications in these diseases.


RSC Advances ◽  
2018 ◽  
Vol 8 (61) ◽  
pp. 35031-35041 ◽  
Author(s):  
Zhi-Qin Liu ◽  
Jing-Jing Du ◽  
Jing-Jing Ren ◽  
Zhi-Yong Zhang ◽  
Xiao-Bo Guo ◽  
...  

The present research represents the first insight into miRNA regulating FOXO1 expression in atherosclerotic endothelial cells.


2021 ◽  
pp. 1-9
Author(s):  
Rima Dardik ◽  
Ophira Salomon

Intracranial hemorrhage (ICH) associated with fetal/neonatal alloimmune thrombocytopenia (FNAIT) is attributed mainly to endothelial damage caused by binding of maternal anti-HPA-1a antibodies to the αvβ3 integrin on endothelial cells (ECs). We examined the effect of anti-HPA-1a antibodies on EC function using 2 EC lines from different vascular beds, HMVEC of dermal origin and hCMEC/D3 of cerebral origin. Anti-HPA-1a sera significantly increased apoptosis in both HMVEC and hCMEC/D3 cells and permeability in hCMEC/D3 cells only. This increase in both apoptosis and permeability was significantly inhibited by a monoclonal anti-β3 antibody (SZ21) binding to the HPA-1a epitope. Our results indicate that (1) maternal anti-HPA-1a antibodies impair EC function by increasing apoptosis and permeability and (2) ECs from different vascular beds vary in their susceptibility to pathological effects elicited by maternal anti-HPA-1a antibodies on EC permeability. Examination of maternal anti-HPA-1a antibodies for their effect on EC permeability may predict potential ICH associated with FNAIT.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Ha-Rim Seo ◽  
Hyo Eun Jeong ◽  
Hyung Joon Joo ◽  
Seung-Cheol Choi ◽  
Jong-Ho Kim ◽  
...  

Background: Human body contains many kinds of different type of endothelial cells (EC). However, cellular difference of their angiogenic potential has been hardly understood. We compared in vitro angiogenic potential between arterial EC and venous EC and investigated its underlying molecular mechanisms. Method: Used human aortic endothelial cells (HAEC) which was indicated from arterial EC and human umbilical vein endothelial cells (HUVEC) indicated from venous EC. To explore angiogenic potential in detail, we adopted a novel 3D microfluidic angiogenesis assay system, which closely mimic in vivo angiogenesis. Results: In 3D microfluidic angiogenesis assay system, HAEC demonstrated stronger angiogenic potential compared to HUVEC. HAEC maintained its profound angiogenic property under different biophysical conditions. In mRNA microarray sorted on up- regulated or down-regulated genes, HAEC demonstrated significantly higher expression of gastrulation brain homeobox 2 (GBX2), fibroblast grow factor 2 (FGF2), FGF5 and collagen 8a1. Angiogenesis-related protein assay revealed that HAEC has higher secretion of endogenous FGF2 than HUVEC. HAEC has only up-regulated FGF2 and FGF5 in this part of FGF family. Furthermore, FGF5 expression under vascular endothelial growth factor-A (VEGF-A) stimulation was higher in HAEC compared to HUVEC although VEGF-A augmented FGF5 expression in both HAEC and HUVEC. Those data suggested that FGF5 expression in both HAEC and HUVEC is partially dependent to VEGF-A stimulate. HUVEC and HAEC reduced vascular density after FGF2 and FGF5 siRNA treat. Conclusion: HAEC has stronger angiogenic potential than HUVEC through up-regulation of endogenous FGF2 and FGF5 expression


2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Ishita Chatterjee ◽  
Kishore K Wary

Rationale: A recent genome-wide association study (GWAS) has linked a frequently occurring variation in the LPP3 (also known as PPAP2b) loci to increased risk of coronary heart disease (CAD). However, the in vivo function of LPP3 in vascular endothelial cell is incompletely understood. Goal: To address the endothelial cell (EC) specific function of Lpp3 in mice. Results: Tie-2/Cre mediated Lpp3 deletion did not affect normal vasculogenesis in early embryonic development, in contrast, in late embryonic stages it led to impaired angiogenesis associated with hemorrhage, edema and late embryonic lethal phenotype. Immunohistochemical staining followed by microscopic analyses of mutant embryos revealed reduced fibronectin and VE-cadherin expression throughout different vascular bed, and increased apoptosis in CD31+ vascular structures. Transmission electron microscopy (TEM) showed the presence of apoptotic endothelial cells and disruption of adherens junctions in mutant embryos. LPP3-knockdown in vitro showed an increase in p53 and p21 protein levels, with concomitant decrease in cell proliferation. LPP3-knockdown also decreased transendothelial electrical resistance (TER), interestingly re-expression of ß-catenin cDNA into LPP3-depleted endothelial cells partially restored the effect of loss of LPP3. Conclusion: These results suggest the ability of LPP3 to regulate survival and apoptotic activities of endothelial cells during patho/physiological angiogenesis.


Sign in / Sign up

Export Citation Format

Share Document