Vibration localization in dual-span, axially moving beams

1995 ◽  
Vol 179 (2) ◽  
pp. 243-266 ◽  
Author(s):  
A.A.N. Al-Jawi ◽  
C. Pierre ◽  
A.G. Ulsoy
Author(s):  
A. A. N. Al-jawi ◽  
A. G. Ulsoy ◽  
Christophe Pierre

Abstract An investigation of the localization phenomenon in band/wheel systems is presented. The effects of tension disorder, interspan coupling, and translation speed on the confinement of the natural modes of free vibration are investigated both theoretically and experimentally. Two models of the band/wheel system dynamics are discussed; a simple model proposed by the authors [1] and a more complete model originally proposed by Wang and Mote [9]. The results obtained using the simple interspan coupling model reveal phenomena (i.e., eigenvalue crossings and veerings and associated mode localization) that are qualitatively similar to those featured by the more complex model of interspan coupling, thereby confirming the usefulness of the simple coupling model. The analytical predictions of the two models are validated by an experiment. A very good agreement between the experimental results and the theoretical ones for the simple model is observed. While both the experimental observations and the theoretical predictions show that a beating phenomenon takes place for ordered stationary and axially moving beams, beating is destroyed (indicating the occurrence of localization) when any small tension disorder is introduced especially for small interspan coupling (i.e., when localization is strongest).


1995 ◽  
Vol 179 (2) ◽  
pp. 267-287 ◽  
Author(s):  
A.A.N. Al-Jawi ◽  
C. Pierre ◽  
A.G. Ulsoy

Author(s):  
A. A. N. Al-jawi ◽  
Christophe Pierre ◽  
A. G. Ulsoy

Abstract An investigation of the vibration localization phenomenon in dual-span, axially moving beams is presented. The effects of a tension difference among the spans, also referred to as disorder, on the natural modes of free vibration are studied in terms of interspan coupling and transport speed. The equations governing the transverse vibration of the two-span, axially moving beam are derived through Hamilton’s principle and solution methods are developed. Results demonstrate that normal mode localization indeed occurs for both stationary and translating disordered two-span beams, especially for small interspan coupling. The occurrence of localization is characterized by a peak deflection much greater in one span than in the other. In the stationary disordered case, localization becomes more pronounced as interspan coupling decreases, i.e., as the span axial tension increases. In the axially moving disordered case, the transport speed has a significant influence on localization, and generally speaking localization becomes stronger with increasing speed. For a moving beam with identical spans, the two loci of each pair of natural frequencies may exhibit one or more crossing(s) (depending on the value of tension) when plotted against the axial transport speed. These crossings become veerings when the beam is disordered, and localization is strongest at those speeds where the eigenvalue veerings occur.


2006 ◽  
Vol 129 (3) ◽  
pp. 380-385 ◽  
Author(s):  
Mohamed Gaith ◽  
Sinan Müftü

Transverse vibration of two axially moving beams connected by a Winkler elastic foundation is analyzed analytically. The two beams are tensioned, translating axially with a common constant velocity, simply supported at their ends, and of different materials and geometry. The natural frequencies and associated mode shapes are obtained. The natural frequencies of the system are composed of two infinite sets describing in-phase and out-of-phase vibrations. In case the beams are identical, these modes become synchronous and asynchronous, respectively. Divergence instability occurs at a critical velocity and a critical tension; and, divergence and flutter instabilities coexist at postcritical speeds, and divergence instability takes place precritical tensions. The effects of the mass, flexural rigidity, and axial tension ratios of the two beams are presented.


2021 ◽  
Author(s):  
Konstantina Ntarladima ◽  
Michael Pieber ◽  
Johannes Gerstmayr

Abstract The present paper addresses axially moving beams with co-moving concentrated masses while undergoing large deformations. For the numerical modeling, a novel beam finite element is introduced, which is based on the absolute nodal coordinate formulation extended with an additional Eulerian coordinate to represent the axial motion. The resulting formulation is well known as Arbitrary Lagrangian Eulerian (ALE) method, which is often used for axially moving beams and pipes conveying fluids. As compared to previous formulations, the present formulation allows us to introduce the Eulerian part by an independent coordinate, which fully incorporates the dynamics of the axial motion, while the shape functions remain independent of the beam coordinates and are thus constant. The proposed approach, which is derived from an extended version of Lagrange’s equations of motion, allows for the investigation of the stability of axially moving beams for a certain axial velocity and stationary state of large deformation. A multibody modeling approach allows us to extend the beam formulation for co-moving discrete masses, which represent concentrated masses attached to the beam, e.g., gondolas in ropeway systems, or transported masses in conveyor belts. Within numerical investigations we show that a larger number of discrete masses behaves similarly as the case of (continuously) distributed mass along the beam.


2019 ◽  
Vol 11 (02) ◽  
pp. 1950021 ◽  
Author(s):  
Yuanbin Wang ◽  
Hu Ding ◽  
Li-Qun Chen

This paper clarified kinematic aspects of motion of axially moving beams undergoing large-amplitude vibration. The kinematics was formulated in the mixed Eulerian–Lagrangian framework. Based on the kinematic analysis, the governing equations of nonlinear vibration were derived from the extended Hamilton principle and the higher-order shear beam theory. The derivation considered the effects of material parameters on the beam deformation. The proposed governing equations were compared with a few previous governing equations. The comparisons show that proposed equations are with higher precision. Besides, the proposed equations can be viewed as the asymptotic governing equations of Lagrange’s equations of motion for large displacement. Finally, the corresponding boundary conditions and the comparison between the presented model equation and classical model equation were provided.


Sign in / Sign up

Export Citation Format

Share Document