INDOOR NOISE AND HIGH SOUND LEVELS—A TRANSCRIPTION OF THE SWEDISH NATIONAL BOARD OF HEALTH AND WELFARE'S GUIDELINES

1997 ◽  
Vol 205 (4) ◽  
pp. 475-480 ◽  
Author(s):  
B. Pettersson
Author(s):  
Greicikelly Gaburro Paneto ◽  
Cristina Engel de Alvarez ◽  
Paulo Henrique Trombetta Zannin

In contemporary cities, and usually without realizing it, the population has been exposed to high sound pressure levels, which besides causing discomfort, can lead to health problems. Considering that a large part of this noise comes from emission from motor vehicles, this research aims to evaluate the sound behavior in sound environments configured by voids in the urban fabric, in order to identify whether open spaces can act as attenuators of sound levels. To obtain the expected results, the methodology used was structured from a review of the state-of-the-art and computer simulations relating the variables that influence the formation of urban space and sound emission and propagation, taking as a case study an urban portion of the municipality of Vitória/ES. In parallel, questionnaires were applied to evaluate the user's perception of their exposure. The measurement results indicated that the sound pressure levels caused by traffic noise are above the limit tolerated limit by the NBR norm 10151:2000 for the daytime period. In turn, the results obtained from the population indicated that there is little perception of noise by the users of the spaces surveyed.


2021 ◽  
Vol 263 (4) ◽  
pp. 2590-2600
Author(s):  
Luiz Henrique Mesa Casa Pereira ◽  
Björn Knöfel ◽  
Jan Troge ◽  
Welf-Guntram Drossel ◽  
Marcel Klein ◽  
...  

Research on the relation between exposure to noise and cognitive performance inside industrial environments is not as broad as on office environments. For a better understanding of the specific industrial noise problems, participants performed arithmetic tests inside a hemi anechoic room while they were exposed to sounds of five typical industrial noise sources. The subjects also classified how annoying they perceived the noise signals. The effect of noise on the arithmetic test's performance was larger on accuracy than on velocity, which was verified using a Student t-test. Spectral-temporal characteristics - especially high frequency content and strong low frequency modulation - appear to relate better with lower performance on the test than high sound levels. Subjects that evaluated noise as more annoying performed worse in a final arithmetic test (under silence) after being exposed to the noises, indicating a possible cumulative effect of noise on performance. The findings provide a better insight in the cognitive behavior of people who are exposed to industrial noise. Hence, the study will proceed with the specific noise analysis of single industrial workplaces.


1996 ◽  
Vol 100 (4) ◽  
pp. 2626-2626
Author(s):  
Eric D. Young ◽  
Roger L. Miller ◽  
Jeff C. Wong

1988 ◽  
Vol 83 (1) ◽  
pp. 203-211
Author(s):  
Gunnhild Oftedal ◽  
Mary Ellen Nivison ◽  
Zheng Jinze

Author(s):  
Giovanni Iarriccio ◽  
Antonio Zippo ◽  
Francesco Pellicano ◽  
Marco Barbieri

In this paper, the results of an experimental campaign focused on the vibrations of shells are presented. More specifically, the goal is to investigate the effect of thermal gradients across the shell thickness on the nonlinear dynamics. The shell is made of polymeric material and an aluminum mass is clamped on one end of the shell; the other shell end is clamped to an electrodynamic shaker, which provides a base harmonic excitation. Tests are performed in a controlled environment where a thermal gradient on the shell thickness is generated by means of a climatic chamber and an internal cartridge heater. Different temperature gradients and base excitation levels have been considered. The nonlinear dynamic scenario is analyzed through amplitude–frequency diagrams, bifurcation diagrams, waterfall diagrams, time histories, Fourier spectra, phase portraits, and Poincaré maps. Results show a strong effect of the temperature on the dynamic response of the shell: subharmonic, quasi-periodic, and chaotic vibrations take place as well as large amplitude vibrations, high sound levels are detected.


Sign in / Sign up

Export Citation Format

Share Document