Phase locking to complex stimuli at high sound levels and in noise‐damaged ears

1996 ◽  
Vol 100 (4) ◽  
pp. 2626-2626
Author(s):  
Eric D. Young ◽  
Roger L. Miller ◽  
Jeff C. Wong
Author(s):  
Greicikelly Gaburro Paneto ◽  
Cristina Engel de Alvarez ◽  
Paulo Henrique Trombetta Zannin

In contemporary cities, and usually without realizing it, the population has been exposed to high sound pressure levels, which besides causing discomfort, can lead to health problems. Considering that a large part of this noise comes from emission from motor vehicles, this research aims to evaluate the sound behavior in sound environments configured by voids in the urban fabric, in order to identify whether open spaces can act as attenuators of sound levels. To obtain the expected results, the methodology used was structured from a review of the state-of-the-art and computer simulations relating the variables that influence the formation of urban space and sound emission and propagation, taking as a case study an urban portion of the municipality of Vitória/ES. In parallel, questionnaires were applied to evaluate the user's perception of their exposure. The measurement results indicated that the sound pressure levels caused by traffic noise are above the limit tolerated limit by the NBR norm 10151:2000 for the daytime period. In turn, the results obtained from the population indicated that there is little perception of noise by the users of the spaces surveyed.


2021 ◽  
Vol 263 (4) ◽  
pp. 2590-2600
Author(s):  
Luiz Henrique Mesa Casa Pereira ◽  
Björn Knöfel ◽  
Jan Troge ◽  
Welf-Guntram Drossel ◽  
Marcel Klein ◽  
...  

Research on the relation between exposure to noise and cognitive performance inside industrial environments is not as broad as on office environments. For a better understanding of the specific industrial noise problems, participants performed arithmetic tests inside a hemi anechoic room while they were exposed to sounds of five typical industrial noise sources. The subjects also classified how annoying they perceived the noise signals. The effect of noise on the arithmetic test's performance was larger on accuracy than on velocity, which was verified using a Student t-test. Spectral-temporal characteristics - especially high frequency content and strong low frequency modulation - appear to relate better with lower performance on the test than high sound levels. Subjects that evaluated noise as more annoying performed worse in a final arithmetic test (under silence) after being exposed to the noises, indicating a possible cumulative effect of noise on performance. The findings provide a better insight in the cognitive behavior of people who are exposed to industrial noise. Hence, the study will proceed with the specific noise analysis of single industrial workplaces.


1988 ◽  
Vol 83 (1) ◽  
pp. 203-211
Author(s):  
Gunnhild Oftedal ◽  
Mary Ellen Nivison ◽  
Zheng Jinze

2021 ◽  
Author(s):  
Chelsea Reichert Plaska ◽  
Jefferson Ortega ◽  
Bernard A. Gomes ◽  
Timothy M. Ellmore

AbstractAn open question in the working memory (WM) field is how information is kept online during the WM delay period. Maintenance of simple stimuli in WM is supported by connectivity between frontal and parietal brain regions. How does delay period activity and connectivity support WM of complex stimuli? Twenty-two participants completed a modified Sternberg WM task with complex stimuli and were told to remember either 2 (low-load) or 5 (high-load) scenes while 32- channel scalp EEG was recorded. During the 6-sec delay period 6 phase-scrambled scenes were presented, which served as interference. While increasing the WM load, particularly with complex stimuli, places a greater demand on attentional resources, interfering stimuli may hijack the available resources. This was confirmed in the examination of theta and alpha amplitude, as amplitude was reduced for the high WM load as compared with the low WM load across frontal, central, and parietal regions. Delay period connectivity was assessed with phase-locking value (PLV). We identified 3 supporting networks that facilitated performance for the low-load condition: 1) increased PLV between left frontal and right posterior temporal in the theta and alpha bands; 2) increased PLV between right anterior temporal and left central in the alpha and lower beta bands; and 3) increased PLV between left anterior temporal and left posterior temporal in theta, alpha, and lower beta bands for the low-load condition. These results suggest that these brain networks facilitated the low-load WM by filtering of interference and the use of verbal rehearsal during the delay period.Impact StatementAlthough, studies of working memory maintenance with simple stimuli have suggested a role of frontal-parietal networks in supporting maintenance, the current study suggests that maintenance of complex visual stimuli with interference present is supported by interhemispheric frontal-posterior temporal and intrahemispheric left temporal region connectivity. These networks support maintenance by filtering of the interfering stimuli, which facilitates the use of verbal rehearsal strategies during the delay period.


Sign in / Sign up

Export Citation Format

Share Document