Production of Labeled cRNA Probes without Vector Cloning: Application to Localization of Basic Fibroblast Growth Factor and Tyrosine Hydroxylase mRNAs by in Situ Hybridization Histochemistry

1993 ◽  
Vol 4 (2) ◽  
pp. 216-221 ◽  
Author(s):  
Andrew J. Bean ◽  
Jan Fredrik Simons ◽  
Tomas Hökfelt
1996 ◽  
Vol 44 (11) ◽  
pp. 1289-1301 ◽  
Author(s):  
S Katsahambas ◽  
M T Hearn

In mated sows, the level of placental vascularization has a direct effect on fetal growth and litter birth weight. Vascularization of the endometrium and uterus under the control of various polypeptide growth factors is an important early stage in this process. Basic fibroblast growth factor (FGF-2), a polypeptide distributed throughout the mesodermal and neuroectodermal tissues of many species, is a vascular endothelial cell mitogen in vitro and has been implicated in neovascularization and wound healing in vivo. As part of our studies of the distribution of FGF-2 in uterine tissue and its role in placental development and embryo implantation, the localization and changes in the abundance of porcine FGF-2 mRNA in the uterus of mated and unmated gilts were investigated by in situ hybridization procedures. These procedures were based on the use of [alpha35S]-dATP-labeled oligonucleotide probes and a novel set of digoxigenin-labeled oligonucleotide probes generated by reverse transcriptase-polymerase chain reaction (RT-PCR) methods and anti-sense labeling strategies from the corresponding mRNA templates. With these in situ hybridization procedures, porcine FGF-2 mRNA was localized during the first 30 days of pregnancy to specific tissue areas in the porcine uterus comprising glandular and luminal epithelial cells and stromal cells of both the stratum functionalis and stratum basalis regions of the endometrium, and within the smooth muscle of myometrium and the associated blood vessels. However, no significant increase in the level of FGF-2 mRNA within these tissues was detected during these early stages of pregnancy or during the estrous cycle of unmated gilts. These distribution and abundance patterns are only partially compatible with other recent observations suggesting a possible role for changing levels of the mature polypeptide form of FGF-2 in the reproductive tract of sows during the early stages of pregnancy.


1988 ◽  
Vol 66 (8) ◽  
pp. 1113-1121 ◽  
Author(s):  
V. K. M. Han ◽  
A. J. D'Ercole ◽  
D. C. Lee

Transforming growth factors (TGFs) are polypeptides that are produced by transformed and tumour cells, and that can confer phenotypic properties associated with transformation on normal cells in culture. One of these growth-regulating molecules, transforming growth factor alpha (TGF-α), is a 50 amino acid polypeptide that is related to epidermal growth factor (EGF) and binds to the EGF receptor. Previous studies have shown that TGF-α is expressed during rodent embryogenesis between 7 and 14 days gestation. To investigate the cellular sites of TGF-α mRNA expression during development, we have performed Northern analyses and in situ hybridization histochemistry on the conceptus and maternal tissues at various gestational ages. Contrary to previous reports, both Northern analyses and in situ hybridization histochemistry indicate that TGF-α mRNA is predominantly expressed in the maternal decidua and not in the embryo. Decidual expression is induced following implantation, peaks at day 8, and declines through day 15 when the decidua is being resorbed. In situ hybridization revealed that expression of TGF-α mRNA is highest in the region of decidua adjacent to the embryo and is low or nondetectable in the uterus, placenta, and embryo. In addition, we could not detect TGF-α mRNA expression in other maternal tissues, indicating that the induction of TGF-α transcripts in the decidua is tissue specific, and not a pleiotropic response to changes in hormonal milieu that occur during pregnancy. The developmentally regulated expression of TGF-α mRNA in the decidua, together with the presence of EGF receptors in this tissue, suggests that this peptide may stimulate mitosis and angiogenesis locally by an autocrine mechanism. Because EGF receptors are also present in the embryo and placenta, TGF-α may act on these tissues by a paracrine or endocrine mechanism.


2007 ◽  
Vol 122 (1) ◽  
pp. 71-78 ◽  
Author(s):  
Christine Hiemstra ◽  
Zhiyuan Zhong ◽  
Mies J. van Steenbergen ◽  
Wim E. Hennink ◽  
Jan Feijen

Sign in / Sign up

Export Citation Format

Share Document