Inhibition of Vascular Endothelial Growth Factor-Associated Tyrosine Kinase Activity with SU5416 Blocks Sprouting in the Microvascular Endothelial Cell Spheroid Model of Angiogenesis

2002 ◽  
Vol 63 (3) ◽  
pp. 304-315 ◽  
Author(s):  
Howard C. Haspel ◽  
Gloria M. Scicli ◽  
Gerald McMahon ◽  
A.Guillermo Scicli
Blood ◽  
2005 ◽  
Vol 105 (5) ◽  
pp. 1970-1976 ◽  
Author(s):  
Margherita Gallicchio ◽  
Stefania Mitola ◽  
Donatella Valdembri ◽  
Roberto Fantozzi ◽  
Brian Varnum ◽  
...  

AbstractGAS6, the product of a growth arrest specific (GAS) gene, is the ligand of the tyrosine kinase receptor Axl. GAS6 and Axl are both expressed in endothelial cells, where they are involved in many processes such as leukocyte transmigration through capillaries and neointima formation in injured vessels. Here, we show that Axl stimulation by GAS6 results in inhibition of the ligand-dependent activation of vascular endothelial growth factor (VEGF) receptor 2 and the consequent activation of an angiogenic program in vascular endothelial cells. GAS6 inhibits chemotaxis of endothelial cells stimulated by VEGF-A isoforms, but not that triggered by fibroblast growth factor-2 or hepatocyte growth factor. Furthermore, it inhibits endothelial cell morphogenesis on Matrigel and VEGF-A–dependent vascularization of chick chorion allantoid membrane. GAS6 activates the tyrosine phosphatase SHP-2 (SH2 domain-containing tyrosine phosphatase 2), which is instrumental in the negative feedback exerted by Axl on VEGF-A activities. A dominant-negative SHP-2 mutant, in which Cys 459 is substituted by Ser, reverted the effect of GAS6 on stimulation of VEGF receptor 2 and endothelial chemotaxis triggered by VEGF-A. These studies provide the first demonstration of a cross talk between Axl and VEGF receptor 2 and add new information on the regulation of VEGF-A activities during tissue vascularization.


Sign in / Sign up

Export Citation Format

Share Document