The Classic Marine Isotope Substage 5e

2002 ◽  
Vol 58 (1) ◽  
pp. 14-16 ◽  
Author(s):  
Nicholas J. Shackleton ◽  
Mark Chapman ◽  
Maria Fernanda Sánchez-Goñi ◽  
Delphine Pailler ◽  
Yves Lancelot

Since its identification nearly fifty years ago, Marine Isotope Stage 5 (MIS 5) has been placed onto absolute time scales on the basis of three independent approaches. Cesare Emiliani, who set up the isotope stages (Emiliani, 1955), depended on uranium-series dating of the sediments, a method that today is regarded as not generally capable of yielding useful precision or accuracy. Broecker and van Donk (1970) pioneered the approach of correlating to radiometrically dated marine coral terraces; this has been much aided in recent years by improvements in the precision and accuracy of these age determinations that have flowed from the development of thermal ionization mass spectrometry (TIMS) for uranium-series dating (Edwards et al., 1986). The third approach is to use the astronomical record as a guide to the time scale. Martinson et al. (1987) generated a detailed time scale for MIS 5 using this approach. These authors suggested that the overall average error was of the order ±5000 yr, although the error would be smaller during interglacial periods with high precession-related variability, such as MIS5. At that time, the suggested confidence limits were smaller than typical values quoted for the radiometric dating of corals (typically ±6000 yr). Today the accuracy of the time scale of Martinson et al. (1987) is challenged by high-precision TIMS dates with quoted uncertainties of the order ±1000 yr or better. From the point of view of achieving a better understanding of the last interglacial period, the more serious disadvantage of the Martinson et al. (1987) time scale is the underlying hypothesis that all the proxy palaeoclimate records represent smoothly varying responses to changes in insolation; hence, there is no basis for estimating the duration of an extended interval with northern ice sheet volumes static at a size no greater than at present. From this point of view, the model of Gallée et al. (1993) is more promising, but that model is not at present sufficiently realistic to provide a reliable independent time scale. We have therefore chosen to depict the oxygen isotope record of core MD95-2042 (37°48′N, 10°10′W, water depth of 3146 m) on a time scale (Shackleton et al., 2001) that is based only on making use of selected radiometric dates obtained from fossil corals to calibrate the isotope record.

2008 ◽  
Vol 104 (11/12) ◽  
Author(s):  
J.C. Vogel ◽  
M.A. Geyh

The radiometric dating of calcrete is often problematical because impurities and open system conditions affect the apparent ages obtained. By applying both radiocarbon and uranium-series dating to calcrete in colluvium, it is shown that such conditions can be identified. In correlation with the stratigraphy, it is found that partial recrystallization severely decreases the radiocarbon ages of the upslope and shallower samples further down, whereas incorporation of limestone fragments from bedrock significantly increases the apparent ages of some of the uranium-series samples. It is concluded that the hillslope calcrete at the study site near Sede Beker in the Negev Desert, Israel, mainly developed shortly after 40 kyr ago, at a time when the Jordan Valley was being inundated to form the fossil Lake Lisan. Since their formation would have required higher rainfall than today, the results provide further evidence that the whole region was experiencing an increase in precipitation.


2008 ◽  
Vol 69 (03) ◽  
pp. 413-420 ◽  
Author(s):  
Morteza Djamali ◽  
Jacques-Louis de Beaulieu ◽  
Madjid Shah-hosseini ◽  
Valérie Andrieu-Ponel ◽  
Philippe Ponel ◽  
...  

A palynological study based on two 100-m long cores from Lake Urmia in northwestern Iran provides a vegetation record spanning 200 ka, the longest pollen record for the continental interior of the Near East. During both penultimate and last glaciations, a steppe ofArtemisiaand Poaceae dominated the upland vegetation with a high proportion of Chenopodiaceae in both upland and lowland saline ecosystems. WhileJuniperusand deciduousQuercustrees were extremely rare and restricted to some refugia,Hippophaë rhamnoidesconstituted an important phanerophyte, particularly during the late last glacial period. A pronounced expansion inEphedrashrub-steppe occurred at the end of the penultimate late-glacial period but was followed by extreme aridity that favoured anArtemisiasteppe. Very high lake levels, registered by both pollen and sedimentary markers, occurred during the middle of the last glaciation and late part of the penultimate glaciation. The late-glacial to early Holocene transition is represented by a succession ofHippophaë, Ephedra, Betula, Pistaciaand finallyJuniperusandQuercus. The last interglacial period (Eemian), slightly warmer and moister than the Holocene, was followed by two interstadial phases similar in pattern to those recorded in the marine isotope record and southern European pollen sequences.


2019 ◽  
Vol 92 (2) ◽  
pp. 530-548 ◽  
Author(s):  
Sebastian Wetterich ◽  
Natalia Rudaya ◽  
Vladislav Kuznetsov ◽  
Fedor Maksimov ◽  
Thomas Opel ◽  
...  

AbstractLate Quaternary landscapes of unglaciated Beringia were largely shaped by ice-wedge polygon tundra. Ice Complex (IC) strata preserve such ancient polygon formations. Here we report on the Yukagir IC from Bol'shoy Lyakhovsky Island in northeastern Siberia and suggest that new radioisotope disequilibria (230Th/U) dates of the Yukagir IC peat confirm its formation during the Marine Oxygen Isotope Stage (MIS) 7a–c interglacial period. The preservation of the ice-rich Yukagir IC proves its resilience to last interglacial and late glacial–Holocene warming. This study compares the Yukagir IC to IC strata of MIS 5, MIS 3, and MIS 2 ages exposed on Bol'shoy Lyakhovsky Island. Besides high intrasedimental ice content and syngenetic ice wedges intersecting silts, sandy silts, the Yukagir IC is characterized by high organic matter (OM) accumulation and low OM decomposition of a distinctive Drepanocladus moss-peat. The Yukagir IC pollen data reveal grass-shrub-moss tundra indicating rather wet summer conditions similar to modern ones. The stable isotope composition of Yukagir IC wedge ice is similar to those of the MIS 5 and MIS 3 ICs pointing to similar atmospheric moisture generation and transport patterns in winter. IC data from glacial and interglacial periods provide insights into permafrost and climate dynamics since about 200 ka.


1988 ◽  
Vol 4 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Colin D. Woodroffe

ABSTRACTA unique stand of mangroves of the genus Bruguiera occurs on the shore terrace at Hosnies Spring, Christmas Island, Indian Ocean. The mangrove stand, of about 0.33 ha, occurs 120 m inland and over an elevational range of 13 m, from 24 to 37 m above sea level. It is flooded by freshwater from a spring which trickles over a partially-cemented calcsinter concretion gravel with mud. Trees reach 30–40 m high, and 80 cm diameter breast height. The size structure is bimodal with few trees in the 10–25 cm dbh size classes, but abundant propagules, seedlings and saplings. The shore terrace contains corals, some in their position of growth, and has been shown by Uranium-series dating to be Last Interglacial in age. Several alternative explanations of how the mangroves reached this site are examined. One explanation is that this stand of mangroves has persisted at the site for approximately 120,000 years since the Last Interglacial. While this cannot be proved it does appear that the stand is relict and is actively regenerating in this unusual location.


2012 ◽  
Vol 78 (2) ◽  
pp. 157-169 ◽  
Author(s):  
Daniel R. Muhs ◽  
John M. Pandolfi ◽  
Kathleen R. Simmons ◽  
R. Randall Schumann

AbstractCuraçao has reef terraces with the potential to provide sea-level histories of interglacial periods. Ages of the Hato (upper) unit of the “Lower Terrace” indicate that this reef dates to the last interglacial period, Marine Isotope Stage (MIS) 5.5. On Curaçao, this high sea stand lasted at least 8000 yr (~ 126 to ~ 118 ka). Elevations and age of this reef show that late Quaternary uplift rates on Curaçao are low, 0.026–0.054 m/ka, consistent with its tectonic setting. Ages of ~ 200 ka for corals from the older Cortalein unit of the Lower Terrace correlate this reef to MIS 7, with paleo-sea level estimates ranging from − 3.3 m to + 2.3 m. The estimates are in agreement with those for MIS 7 made from other localities and indicate that the penultimate interglacial period was a time of significant warmth, on a par with the present interglacial period. The ~ 400 ka (MIS 11) Middle Terrace I on Curaçao, dated by others, may have formed from a paleo-sea level of + 8.3 to + 10.0 m, or (less likely) + 17 m to + 20 m. The lower estimates are conservative compared to previous studies, but still require major ice sheet loss from Greenland and Antarctica.


2014 ◽  
Vol 82 (3) ◽  
pp. 490-503 ◽  
Author(s):  
Shannon A. Mahan ◽  
Harrison J. Gray ◽  
Jeffrey S. Pigati ◽  
Jim Wilson ◽  
Nathaniel A. Lifton ◽  
...  

AbstractThe Ziegler Reservoir fossil site near Snowmass Village, Colorado (USA), provides a unique opportunity to reconstruct high-altitude paleoenvironmental conditions in the Rocky Mountains during the Last Interglacial Period. We used four different techniques to establish a chronological framework for the site. Radiocarbon dating of lake organics, bone collagen, and shell carbonate, and in situ cosmogenic 10Be and 26Al ages on a boulder on the crest of a moraine that impounded the lake suggest that the ages of the sediments that hosted the fossils are between ~140 ka and >45 ka. Uranium-series ages of vertebrate remains generally fall within these bounds, but extremely low uranium concentrations and evidence of open-system behavior limit their utility. Optically stimulated luminescence (OSL) ages (n = 18) obtained from fine-grained quartz maintain stratigraphic order, were replicable, and provide reliable ages for the lake sediments. Analysis of the equivalent dose (DE) dispersion of the OSL samples showed that the sediments were fully bleached prior to deposition and low scatter suggests that eolian processes were likely the dominant transport mechanism for fine-grained sediments into the lake. The resulting ages show that the fossil-bearing sediments span the latest part of Marine Oxygen Isotope Stage (MIS) 6, all of MIS 5 and MIS 4, and the earliest part of MIS 3.


1988 ◽  
Vol 10 ◽  
pp. 199-200 ◽  
Author(s):  
J.M. Barnola ◽  
C. Genthon ◽  
D. Raynaud ◽  
J. Jouzel ◽  
Ye.S. Korotkevich ◽  
...  

This is a summary of the main CO2 results obtained from the Vostok core which have been presented in two papers recently published (Barnola and others 1987; Genthon and others 1987). Previous results of ice-core analysis have already provided valuable information on atmospheric CO2 variations associated with anthropogenic activities (Neftel and others 1985, Raynaud and Barnola 1985[a], Pearman and others 1986) and with climatic variations back to about 40 ka ago (Delmas and others 1980, Neftel and others 1982, Raynaud and Barnola 1985[b]). The Antarctic Vostok ice core provides a unique opportunity for extending the ice record of atmospheric CO2 variations over the last glacial–interglacial cycle back to the end of the penultimate ice age, about 160 ka ago. CO2 measurements were made at 66 different depth levels on the air enclosed in the 2083 m long core taken at Vostok Station. The air was extracted by crushing the ice, under vacuum, in a cold-room, and analysed by gas chromatography (Barnola and others 1983). The selected sampling corresponds to a time resolution between two neighbouring levels which range approximately from 2000 to 4500 years. The ages quoted in this abstract are based on the Vostok ice chronology given by Lorius and others (1985) and take into account the fact that the air is trapped in the firn well after snow deposition (between about 2500 and 4300 years after precipitation in the case of Vostok). The CO2 variations observed are compared directly with the changes in Antarctic temperature as depicted by the stable-isotope record of the Vostok ice (Jouzel and others 1988, this volume). Furthermore, a CO2-orbital forcing-climate interaction is suggested by spectral analysis of the CO2 and temperature profiles, which both show a concentration of variance around orbital frequencies. The temperature profile is clearly dominated by a 40 ka period (which can be related to the obliquity frequency) (Jouzel and others 1988, this volume), whereas the CO2 record exhibits a well-defined 21 ka peak (which can be related to the precession frequencies) and only a weak and doubtful 40 ka peak. To check the relative influence of CO2 and orbital forcings on the temperature at Vostok, we modelled the temperature signal deduced from the stable-isotope record of the ice as a response to CO2, Northern Hemisphere ice volume and local insolation forcings. The results indicate that more than 90% of the temperature variance can be explained by these three kinds of forcing and that the contribution of the CO2 radiative effect associated with an amplification factor (which should reflect the long-term feed-back mechanisms) lies between 27 and 85% of the explained variance. This approach stresses the important role that CO2 may generally have played in determining the Earth’s climate during the late Pleistocene. The most obvious feature of the Vostok CO2 record lies in its high correlation (r2 = 0.79) with the climatic record. The results obtained show high CO2 concentrations during warm periods (mean CO2 values of 263 ppm volume for the Holocene and 272 ppm volume for the last interglacial period) and low concentrations (between about 240 and 190 ppm volume) over glacial periods. Within the last glaciation, the CO2 concentrations are higher during the first part (mean CO2 value of 230 ppm volume between about 110–65 ka B.P.) than during the second part (203 ppm volume between 65–15 ka B.P.); the second part also indicates that climatic conditions were colder. Our results point to some limitation on the possible mechanisms driving the atmospheric CO2 variations and, in particular, the influence of some oceanic areas or of changes in sea-level (see, for example, Broecker and Peng 1986). The weak 41 ka cycle (this cycle seems to be a characteristic of the spectra of the proxy data for high latitudes) in our CO2 record suggests that high latitudes may not have a major influence on CO2 variations. Furthermore, the phase relationship between CO2 and the temperature variations indicates that at the beginning of the two deglaciations around 145ka B.P. and 15ka B.P., taking into account the time resolution of our profile, the CO2 increases roughly in phase with the Vostok temperature. As surface-temperature changes around Antarctica are expected to lead to changes in sea-level (see, for instance, CLIMAP Project Members 1984), our results suggest that the CO2 increase cannot lag the increase in sea-level and thus that this parameter cannot initiate the CO2 variation recorded at the beginning of those two deglaciations. Nevertheless, this does not rule out influence of variations in sea-level on atmospheric CO2 for other periods of interest, in particular during the last interglacial–glacial transition, where the CO2 lags the Vostok temperature.


2014 ◽  
Vol 82 (2) ◽  
pp. 450-461 ◽  
Author(s):  
Eleonora Regattieri ◽  
Giovanni Zanchetta ◽  
Russell N. Drysdale ◽  
Ilaria Isola ◽  
John C. Hellstrom ◽  
...  

AbstractRelatively few radiometrically dated records are available for the central Mediterranean spanning the marine oxygen isotope stage 6–5 (MIS 6–5) transition and the first part of the Last Interglacial. Two flowstone cores from Tana che Urla Cave (TCU, central Italy), constrained by 19 U/Th ages, preserve an interval of continuous speleothem deposition between ca. 159 and 121 ka. A multiproxy record (δ18O, δ13C, growth rate and petrographic changes) obtained from this flowstone preserves significant regional-scale hydrological changes through the glacial/interglacial transition and multi-centennial variability (interpreted as alternations between wetter and drier periods) within both glacial and interglacial stages. The glacial stage shows a wetter period between ca. 154 and 152 ka, while the early to middle Last Interglacial period shows several drying events at ca. 129, 126 and 122 ka, which can be placed in the wider context of climatic instability emerging from North Atlantic marine and NW European terrestrial records. The TCU record also provides important insights into the evolution of local environmental conditions (i.e. soil development) in response to regional and global-scale climate events.


Sign in / Sign up

Export Citation Format

Share Document