scholarly journals Genetic Manipulation of Equine Arteritis Virus Using Full-Length cDNA Clones: Separation of Overlapping Genes and Expression of a Foreign Epitope

Virology ◽  
2000 ◽  
Vol 270 (1) ◽  
pp. 84-97 ◽  
Author(s):  
Antoine A.F. de Vries ◽  
Amy L. Glaser ◽  
Martin J.B. Raamsman ◽  
Cornelis A.M. de Haan ◽  
Sonia Sarnataro ◽  
...  
1998 ◽  
Vol 36 (9) ◽  
pp. 647-656 ◽  
Author(s):  
Chye-Fong Liew ◽  
Chong-Jin Goh ◽  
Chiang-Shiong Loh ◽  
Saw-Hoon Lim

1998 ◽  
Vol 72 (1) ◽  
pp. 380-387 ◽  
Author(s):  
J. J. M. Meulenberg ◽  
J. N. A. Bos-de Ruijter ◽  
R. van de Graaf ◽  
G. Wensvoort ◽  
R. J. M. Moormann

ABSTRACT The 5′-terminal end of the genomic RNA of the Lelystad virus isolate (LV) of porcine reproductive and respiratory syndrome virus was determined. To construct full-length cDNA clones, the 5′-terminal sequence was ligated to cDNA clones covering the complete genome of LV. When RNA that was transcribed in vitro from these full-length cDNA clones was transfected into BHK-21 cells, infectious LV was produced and secreted. The virus was rescued by passage to porcine alveolar lung macrophages or CL2621 cells. When infectious transcripts were transfected to porcine alveolar lung macrophages or CL2621 cells, no infectious virus was produced due to the poor transfection efficiency of these cells. The growth properties of the viruses produced by BHK-21 cells transfected with infectious transcripts of LV cDNA resembled the growth properties of the parental virus from which the cDNA was derived. Two nucleotide changes leading to a unique PacI restriction site directly downstream of the ORF7 gene were introduced in the genome-length cDNA clone. The virus recovered from this mutated cDNA clone retained the PacI site, which confirmed the de novo generation of infectious LV from cloned cDNA. These results indicate that the infectious clone of LV enables us to mutagenize the viral genome at specific sites and that it will therefore be useful for detailed molecular characterization of the virus, as well as for the development of a safe and effective live vaccine for use in pigs.


BioTechniques ◽  
2004 ◽  
Vol 36 (4) ◽  
pp. 690-700 ◽  
Author(s):  
Jia Qian Wu ◽  
Angela M. Garcia ◽  
Steven Hulyk ◽  
Anna Sneed ◽  
Carla Kowis ◽  
...  

Viruses ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 368 ◽  
Author(s):  
Maximilian Münster ◽  
Anna Płaszczyca ◽  
Mirko Cortese ◽  
Christopher Neufeldt ◽  
Sarah Goellner ◽  
...  

The Zika virus (ZIKV) has recently attracted major research interest as infection was unexpectedly associated with neurological manifestations in developing foetuses and with Guillain-Barré syndrome in infected adults. Understanding the underlying molecular mechanisms requires reverse genetic systems, which allow manipulation of infectious cDNA clones at will. In the case of flaviviruses, to which ZIKV belongs, several reports have indicated that the construction of full-length cDNA clones is difficult due to toxicity during plasmid amplification in Escherichia coli. Toxicity of flaviviral cDNAs has been linked to the activity of cryptic prokaryotic promoters within the region encoding the structural proteins leading to spurious transcription and expression of toxic viral proteins. Here, we employ an approach based on in silico prediction and mutational silencing of putative promoters to generate full-length cDNA clones of the historical MR766 strain and the contemporary French Polynesian strain H/PF/2013 of ZIKV. While for both strains construction of full-length cDNA clones has failed in the past, we show that our approach generates cDNA clones that are stable on single bacterial plasmids and give rise to infectious viruses with properties similar to those generated by other more complex assembly strategies. Further, we generate luciferase and fluorescent reporter viruses as well as sub-genomic replicons that are fully functional and suitable for various research and drug screening applications. Taken together, this study confirms that in silico prediction and silencing of cryptic prokaryotic promoters is an efficient strategy to generate full-length cDNA clones of flaviviruses and reports novel tools that will facilitate research on ZIKV biology and development of antiviral strategies.


2015 ◽  
Vol 96 (5) ◽  
pp. 1190-1190
Author(s):  
Caitlin M. Cossaboom ◽  
Yao-Wei Huang ◽  
Danielle M. Yugo ◽  
Scott P. Kenney ◽  
Pablo Piñeyro ◽  
...  

Blood ◽  
2001 ◽  
Vol 97 (11) ◽  
pp. 3513-3520 ◽  
Author(s):  
Miguel Angel de la Fuente ◽  
Victoria Tovar ◽  
Neus Villamor ◽  
Nuria Zapater ◽  
Pilar Pizcueta ◽  
...  

Ly-9 is a mouse cell-surface glycoprotein that is selectively expressed on thymocytes and on mature T and B lymphocytes. Ly-9 belongs to the CD2 subset of the immunoglobulin superfamily, an emerging family of cell signaling receptors. Recently, a partial human Ly-9 complementary DNA (cDNA) sequence has been described. Full-length cDNA clones were isolated that included the initiation codon, the sequence encoding the full signal peptide, and 14 amino acids more in the cytoplasmic domain than in the previously reported clone. The predicted extracellular domain of human Ly-9 contains 4 immunoglobulinlike domains, similar to those in mouse Ly-9. Northern blot analysis revealed that the human Ly-9 messenger RNA (2.6 kb) is expressed predominantly in lymph node, spleen, thymus, and peripheral blood leukocytes. Four monoclonal antibodies (mAbs) were raised against human Ly-9 by immunizing mice with the pre-B-cell line 300.19 stably transfected with human Ly-9 full-length cDNA. These mAbs strongly stained the surfaces of cells transfected with human Ly-9 cDNA but not of untransfected cells. Human Ly-9 expression was restricted to T and B lymphocytes and thymocytes, with the highest levels of expression on CD4+CD8− and CD4−CD8+ thymocytes. Monocytes, granulocytes, platelets, and red blood cells were uniformly negative for Ly-9. These mAbs immunoprecipitated major polypeptides of 120 kd from the transfected cells and 120 kd and 100 kd from B-cell line Daudi, probably because of the cell-surface–expressed isoforms. These data demonstrate that human Ly-9 is a new marker for the study of normal and malignant leukocytes.


Virus Genes ◽  
2015 ◽  
Vol 51 (1) ◽  
pp. 163-166 ◽  
Author(s):  
Fumei Zhao ◽  
Un Sun Hwang ◽  
Seungmo Lim ◽  
Ran Hee Yoo ◽  
Davaajargal Igori ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document