Possibilities and Limitations of the Use of Stable Isotopes (δ13C and δ15N) from Human Bone Collagen and Carbonate as an Aid in Migration Studies

Author(s):  
M Van Strydonck ◽  
M Boudin ◽  
A Ervynck
PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247569
Author(s):  
Deborah C. Merrett ◽  
Christina Cheung ◽  
Christopher Meiklejohn ◽  
Michael P. Richards

We report here on stable carbon, nitrogen, and sulfur isotope values from bone collagen of human (n = 20) and faunal (n = 11) remains from the Early Neolithic site of Ganj Dareh, Iran, dating to ca. 10,100 cal. BP. Our focus explores how isotope values of human bone vary by age and sex, and evaluates dietary practices at this site. It also provides a baseline for future studies of subsistence in the early Holocene Central Zagros Mountains, from the site with the first evidence for human ovicaprid management in the Near East. Human remains include individuals of all age groups for dietary reconstruction, as well two Ottoman intrusive burials for temporal and cultural comparison. All analyzed individuals exhibited δ13C and δ15N values consistent with a diet based heavily on C3 terrestrial sources. There is no statistically significant difference between the isotopic compositions of the two sexes, though males appear to show larger variations compared to females. Interesting patterns in the isotopic compositions of the subadults suggested weaning children may be fed with supplements with distinctive δ13C values. Significant difference in sulfur isotope values between humans and fauna could be the earliest evidence of transhumance and could identify one older adult male as a possible transhumant shepherd. Both Ottoman individuals had distinctively different δ13C, δ15N, and δ34S values compared to the Neolithic individuals. This is the first large scale analysis of human stable isotopes from the eastern end of the early Holocene Fertile Crescent. It provides a baseline for future intersite exploration of stable isotopes and insight into the lifeways, health, and processes of neolithisation associated with the origins of goat domestication at Ganj Dareh and the surrounding Central Zagros.


2019 ◽  
Author(s):  
Marko J. Spasojevic ◽  
Sören Weber1

Stable carbon (C) and nitrogen (N) isotopes in plants are important indicators of plant water use efficiency and N acquisition strategies. While often regarded as being under environmental control, there is growing evidence that evolutionary history may also shape variation in stable isotope ratios (δ13C and δ15N) among plant species. Here we examined patterns of foliar δ13C and δ15N in alpine tundra for 59 species in 20 plant families. To assess the importance of environmental controls and evolutionary history, we examined if average δ13C and δ15N predictably differed among habitat types, if individual species exhibited intraspecific trait variation (ITV) in δ13C and δ15N, and if there were a significant phylogenetic signal in δ13C and δ15N. We found that variation among habitat types in both δ13C and δ15N mirrored well-known patterns of water and nitrogen limitation. Conversely, we also found that 40% of species exhibited no ITV in δ13C and 35% of species exhibited no ITV in δ15N, suggesting that some species are under stronger evolutionary control. However, we only found a modest signal of phylogenetic conservatism in δ13C and no phylogenetic signal in δ15N suggesting that shared ancestry is a weaker driver of tundra wide variation in stable isotopes. Together, our results suggest that both evolutionary history and local environmental conditions play a role in determining variation in δ13C and δ15N and that considering both factors can help with interpreting isotope patterns in nature and with predicting which species may be able to respond to rapidly changing environmental conditions.


2021 ◽  
Vol 164 ◽  
pp. 112007
Author(s):  
Dan Wu ◽  
Fenfen Zhang ◽  
Xiaodi Zhang ◽  
Xiubao Li ◽  
Hui Huang ◽  
...  

2016 ◽  
Vol 130 (6) ◽  
pp. 1647-1656 ◽  
Author(s):  
Ana R. Vassalo ◽  
Eugénia Cunha ◽  
Luís A. E. Batista de Carvalho ◽  
David Gonçalves

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7174
Author(s):  
John P. Hart ◽  
Robert S. Feranec ◽  
Timothy J. Abel ◽  
Jessica L. Vavrasek

Isotopic analysis of dog (Canis lupus familiaris) bone recovered from archaeological sites as proxies for human bone is becoming common in North America. Chronological placement of the dogs is often determined through radiocarbon dating of dog bone. The Great Lakes, their tributaries, and nearby lakes and streams were important fisheries for Native Americans prior to and after sustained European presence in the region. Carbon entering the food web in freshwater systems is often not in full isotopic equilibrium with the atmosphere, giving rise to spuriously old radiocarbon ages in fish, other aquatic organisms, and their consumers. These freshwater reservoir offsets (FROs) have been noted on human and dog bone in several areas of the world. Here we report the results of multi-tracer Bayesian dietary modeling using δ15N and δ13C values on dog bone collagen from mid-fifteenth to mid-sixteenth-century Iroquoian village sites at the headwaters of the St. Lawrence River, New York, USA. Results indicate that fish was an important component of dog diets. A comparison of radiocarbon dates on dog bone with dates on deer bone or maize from the same sites indicate FROs ranging from 97 ± 24 to 220 ± 39 14Cyr with a weighted mean of 132 ± 8 14Cyr. These results suggest that dog bone should not be used for radiocarbon dating in the absence of modeling to determine fish consumption and that previously reported radiocarbon dates on human bone from the larger region are likely to have FROs given the known importance of fish in regional human diets.


2010 ◽  
Vol 286 (1-2) ◽  
pp. 88-96 ◽  
Author(s):  
Paul Szpak ◽  
Darren R. Gröcke ◽  
Regis Debruyne ◽  
Ross D.E. MacPhee ◽  
R. Dale Guthrie ◽  
...  

2010 ◽  
Vol 61 (3) ◽  
pp. 302 ◽  
Author(s):  
Matthew D. Taylor ◽  
Debashish Mazumder

Carbon and nitrogen stable isotope ratios were analysed for hatchery-reared, recaptured and wild mulloway, Argyrosomus japonicus, to investigate temporal and growth-related changes in isotopic composition for stocked fish after release, and to evaluate changes in isotopic composition in terms of ontogenetic dietary switches. δ13C and δ15N values decreased and increased, respectively, after release. The isotope composition of released fish was distinct from wild fish until 200 days after release, but after 200 days post-release fish did not differ significantly from wild fish of similar or greater sizes. Abrupt dietary transitions from crustaceans to teleost fish (>50 cm total length (TL)) were evident in a rapid δ13C and δ15N change in wild mulloway, and δ15N was significantly greater in wild fish >65 cm TL compared with wild fish <50 cm TL. Multivariate carbon and nitrogen isotopic data were suitable for separating stocked and wild fish for up to 200 days after release, but did not separate wild fish grouped according to dietary composition. Carbon and nitrogen isotopic composition closely reflected dietary transitions and rapid adaptation by stocked mulloway to wild diets, which was evident in a high tissue turnover rate of up to 0.017 day–1. Stable isotopes are a useful tool for examining the integration of released fish into stocked ecosystems and can be used to describe convergence in the diets of wild and released fish.


1997 ◽  
Vol 55 (2) ◽  
pp. 131-141 ◽  
Author(s):  
Susanne Turban-Just
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document