Open Physics ◽  
2012 ◽  
Vol 10 (6) ◽  
Author(s):  
Peter Senger

AbstractThe Compressed Baryonic Matter (CBM) experiment will be one of the major scientific pillars of the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. The goal of the CBM research program is to explore the QCD phase diagram in the region of high baryon densities using high-energy nucleus-nucleus collisions. This includes the study of the equation-of-state of nuclear matter at high densities, and the search for the deconfinement and chiral phase transitions. The CBM detector is designed to measure both bulk observables with large acceptance and rare diagnostic probes such as charmed particles and vector mesons decaying into lepton pairs.


Author(s):  
L. T. Pawlicki ◽  
R. M. Siegoczyński ◽  
S. Ptasznik ◽  
K. Marszałek

AbstractThe main purpose of the experiment was a thermodynamic research with use of the electric methods chosen. The substance examined was olive oil. The paper presents the resistance, capacitive reactance, relative permittivity and resistivity of olive. Compression was applied with two mean velocities up to 450 MPa. The results were shown as functions of pressure and time and depicted on the impedance phase diagram. The three first order phase transitions have been detected. All the changes in material parameters were observed during phase transitions. The material parameters measured turned out to be the much more sensitive long-time phase transition factors than temperature. The values of material parameters and their dependence on pressure and time were compared with the molecular structure, arrangement of molecules and interactions between them. Knowledge about olive oil parameters change with pressure and its phase transitions is very important for olive oil production and conservation.


2015 ◽  
Vol 91 (13) ◽  
Author(s):  
Agnès Dewaele ◽  
Vincent Stutzmann ◽  
Johann Bouchet ◽  
François Bottin ◽  
Florent Occelli ◽  
...  

2007 ◽  
Vol 99 (9) ◽  
Author(s):  
Stefano Buzzaccaro ◽  
Roberto Rusconi ◽  
Roberto Piazza

2001 ◽  
Vol 16 (17) ◽  
pp. 1129-1138 ◽  
Author(s):  
M. SADZIKOWSKI

The Nambu–Bogoliubov–de Gennes method is applied to the problem of superconducting QCD. The effective quark–quark interaction is described within the framework of the Nambu–Jona-Lasinio model. The details of the phase diagram are given as a function of the strength of the quark–quark coupling constant G′. It is found that there is no superconducting phase transition when one uses the relation between the coupling constants G′ and G of the Nambu–Jona-Lasinio model which follows from the Fierz transformation. However, for other values of G′ one can find a rich phase structure containing both the chiral and the superconducting phase transitions.


Author(s):  
A. Dominic Fortes ◽  
Felix Fernandez-Alonso ◽  
Matthew Tucker ◽  
Ian G. Wood

We have collected neutron powder diffraction data from MgSO4·11D2O (the deuterated analogue of meridianiite), a highly hydrated sulfate salt that is thought to be a candidate rock-forming mineral in some icy satellites of the outer solar system. Our measurements, made using the PEARL/HiPr and OSIRIS instruments at the ISIS neutron spallation source, covered the range 0.1 < P < 800 MPa and 150 < T < 280 K. The refined unit-cell volumes as a function of P and T are parameterized in the form of a Murnaghan integrated linear equation of state having a zero-pressure volume V 0 = 706.23 (8) Å3, zero-pressure bulk modulus K 0 = 19.9 (4) GPa and its first pressure derivative, K′ = 9 (1). The structure's compressibility is highly anisotropic, as expected, with the three principal directions of the unit-strain tensor having compressibilities of 9.6 × 10−3, 3.4 × 10−2 and 3.4 × 10−3 GPa−1, the most compressible direction being perpendicular to the long axis of a discrete hexadecameric water cluster, (D2O)16. At high pressure we observed two different phase transitions. First, warming of MgSO4·11D2O at 545 MPa resulted in a change in the diffraction pattern at 275 K consistent with partial (peritectic) melting; quasielastic neutron spectra collected simultaneously evince the onset of the reorientational motion of D2O molecules with characteristic time-scales of 20–30 ps, longer than those found in bulk liquid water at the same temperature and commensurate with the lifetime of solvent-separated ion pairs in aqueous MgSO4. Second, at ∼ 0.9 GPa, 240 K, MgSO4·11D2O decomposed into high-pressure water ice phase VI and MgSO4·9D2O, a recently discovered phase that has hitherto only been formed at ambient pressure by quenching small droplets of MgSO4(aq) in liquid nitrogen. The fate of the high-pressure enneahydrate on further compression and warming is not clear from the neutron diffraction data, but its occurrence indicates that it may also be a rock-forming mineral in the deep mantles of large icy satellites.


2017 ◽  
Author(s):  
Fernando Meloni ◽  
Cristiano R. F. Granzotti ◽  
Alexandre S. Martinez

AbstractDrylands are ecosystems with limited water resources, often subjected to desertification. Conservation and restoration efforts towards these ecosystems depend on the interplay between ecological functioning and spatial patterns formed by local vegetation. Despite recent advances on the subject, an adequate description of phase transitions between the various vegetated phases remains an open issue. Here, we gather vegetation data of drylands from Southern Spain using satellite images. Our findings support three vegetated phases, separated by two distinct phase transitions, including a continuous phase transition, with new relations between scaling exponents of ecological variables. The phase diagram is obtained without a priori assumption about underlying ecological dynamics. We apply our analysis to a different dryland system in the Western United States and verify a compatible critical behavior, in agreement with the universality hypothesis.


2020 ◽  
Vol 124 (4) ◽  
Author(s):  
T. Tian ◽  
H.-X. Yang ◽  
L.-Y. Qiu ◽  
H.-Y. Liang ◽  
Y.-B. Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document