Identification of submarine hard-bottom substrates in the German North Sea and Baltic Sea EEZ with high-resolution acoustic seafloor imaging

Author(s):  
Markus Diesing ◽  
Klaus Schwarzer
Keyword(s):  
2021 ◽  
Author(s):  
Thomas Spangehl ◽  
Michael Borsche ◽  
Deborah Niermann ◽  
Frank Kaspar ◽  
Birger Tinz

<p>The exploitation of offshore wind energy is an essential part of the German energy transition (Energiewende). The planning of new offshore wind farms demands detailed information on wind conditions at turbine hub heights in the North Sea and Baltic Sea. High-resolution reanalyses which are based on state-of-the-art numerical weather prediction (NWP) models combined with data assimilation systems offer the required meteorological data which are suitable for climatological assessment.</p><p>The regional reanalysis COSMO-REA6 operated by Germany’s national meteorological service (Deutscher Wetterdienst, DWD) provides hourly data of 6 km horizontal resolution for 1995-2019/08 (Kaspar et al., 2020). Moreover, hourly data of 31 km horizontal resolution for 1950 to present are available from the global reanalysis ERA5 produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). DWD delivers reanalysis data and statistical evaluation results to Bundesamt für Seeschifffahrt und Hydrographie (BSH) in order to facilitate offshore site tenders. Data and a report were recently published as part of the tenders for 2021 (https://pinta.bsh.de/).</p><p>Here we present an evaluation of the 100 m wind speed and direction from COSMO-REA6 and ERA5 based on a comprehensive statistical analysis. On the reference side the FINO measurements (Research platforms in the North Sea and Baltic Sea, https://www.fino-offshore.de/en/index.html) from FINO1 and FINO2 are used. The FINO measurements are not used by the data assimilation schemes of the two reanalyses and therefore constitute independent reference data. The focus is on episodes prior to the installation of wind farms in the direct vicinity of the FINO platforms to avoid wake effects. The quality of the two reanalyses is compared to other state-of-the-art reanalyses and wind atlas data.</p><p>Reference:</p><p>Kaspar et al. (2020): Regional atmospheric reanalysis activities at Deutscher Wetterdienst: review of evaluation results and application examples with a focus on renewable energy, Adv. Sci. Res., 17, 115–128, https://doi.org/10.5194/asr-17-115-2020.</p>


Author(s):  
Aleksandr Danchenkov ◽  
Aleksandr Danchenkov

Modern technologies, which provide fast and accurate acquisition of high-resolution spatial data, have found widespread application in the monitoring of coastal processes. This paper reports the results of four years’ monitoring of a huge deflation/blowout/wind-scour basin dynamics at the Vistula Spit (southeast coast of the Baltic Sea). Information about the volume and size dynamics together with deflation/accumulation schemes and 3D elevation maps is presented. Basing on the obtained results, forecast of the deflation basin dynamics for 2016 was proposed. This paper implements the Terrestrial Laserscanning (TLS) method to the coastal processes investigation and demonstrates its high potential in this field.


Author(s):  
Aleksandr Danchenkov ◽  
Aleksandr Danchenkov

Modern technologies, which provide fast and accurate acquisition of high-resolution spatial data, have found widespread application in the monitoring of coastal processes. This paper reports the results of four years’ monitoring of a huge deflation/blowout/wind-scour basin dynamics at the Vistula Spit (southeast coast of the Baltic Sea). Information about the volume and size dynamics together with deflation/accumulation schemes and 3D elevation maps is presented. Basing on the obtained results, forecast of the deflation basin dynamics for 2016 was proposed. This paper implements the Terrestrial Laserscanning (TLS) method to the coastal processes investigation and demonstrates its high potential in this field.


2021 ◽  
Author(s):  
Andrés Martínez

<p><strong>A METHODOLOGY FOR OPTIMIZING MODELING CONFIGURATION IN THE NUMERICAL MODELING OF OIL CONCENTRATIONS IN UNDERWATER BLOWOUTS: A NORTH SEA CASE STUDY</strong></p><p>Andrés Martínez<sup>a,*</sup>, Ana J. Abascal<sup>a</sup>, Andrés García<sup>a</sup>, Beatriz Pérez-Díaz<sup>a</sup>, Germán Aragón<sup>a</sup>, Raúl Medina<sup>a</sup></p><p><sup>a</sup>IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Avda. Isabel Torres, 15, 39011 Santander, Spain</p><p><sup>* </sup>Corresponding author: [email protected]</p><p>Underwater oil and gas blowouts are not easy to repair. It may take months before the well is finally capped, releasing large amounts of oil into the marine environment. In addition, persistent oils (crude oil, fuel oil, etc.) break up and dissipate slowly, so they often reach the shore before the cleanup is completed, affecting vasts extension of seas-oceans, just as posing a major threat to marine organisms.</p><p>On account of the above, numerical modeling of underwater blowouts demands great computing power. High-resolution, long-term data bases of wind-ocean currents are needed to be able to properly model the trajectory of the spill at both regional (open sea) and local level (coastline), just as to account for temporal variability. Moreover, a large number of particles, just as a high-resolution grid, are unavoidable in order to ensure accurate modeling of oil concentrations, of utmost importance in risk assessment, so that threshold concentrations can be established (threshold concentrations tell you what level of exposure to a compound could harm marine organisms).</p><p>In this study, an innovative methodology has been accomplished for the purpose of optimizing modeling configuration: number of particles and grid resolution, in the modeling of an underwater blowout, with a view to accurately represent oil concentrations, especially when threshold concentrations are considered. In doing so, statistical analyses (dimensionality reduction and clustering techniques), just as numerical modeling, have been applied.</p><p>It is composed of the following partial steps: (i) classification of i representative clusters of forcing patterns (based on PCA and K-means algorithms) from long-term wind-ocean current hindcast data bases, so that forcing variability in the study area is accounted for; (ii) definition of j modeling scenarios, based on key blowout parameters (oil type, flow rate, etc.) and modeling configuration (number of particles and grid resolution); (iii) Lagrangian trajectory modeling of the combination of the i clusters of forcing patterns and the j modeling scenarios; (iv) sensitivity analysis of the Lagrangian trajectory model output: oil concentrations,  to modeling configuration; (v) finally, as a result, the optimal modeling configuration, given a certain underwater blowout (its key parameters), is provided.</p><p>It has been applied to a hypothetical underwater blowout in the North Sea, one of the world’s most active seas in terms of offshore oil and gas exploration and production. A 5,000 cubic meter per day-flow rate oil spill, flowing from the well over a 15-day period, has been modeled (assuming a 31-day period of subsequent drift for a 46-day modeling). Moreover, threshold concentrations of 0.1, 0.25, 1 and 10 grams per square meter have been applied in the sensitivity analysis. The findings of this study stress the importance of modeling configuration in accurate modeling of oil concentrations, in particular if lower threshold concentrations are considered.</p>


2016 ◽  
Vol 92 (4) ◽  
pp. fiw054 ◽  
Author(s):  
Carolina Reyes ◽  
Olaf Dellwig ◽  
Kirstin Dähnke ◽  
Matthias Gehre ◽  
Beatriz E. Noriega-Ortega ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document