Scale-Invariant Image Features and Image Descriptors

2014 ◽  
pp. 713-713
Data ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 52 ◽  
Author(s):  
Oleksii Gorokhovatskyi ◽  
Volodymyr Gorokhovatskyi ◽  
Olena Peredrii

In this paper, we propose an investigation of the properties of structural image recognition methods in the cluster space of characteristic features. Recognition, which is based on key point descriptors like SIFT (Scale-invariant Feature Transform), SURF (Speeded Up Robust Features), ORB (Oriented FAST and Rotated BRIEF), etc., often relating to the search for corresponding descriptor values between an input image and all etalon images, which require many operations and time. Recognition of the previously quantized (clustered) sets of descriptor features is described. Clustering is performed across the complete set of etalon image descriptors and followed by screening, which allows for representation of each etalon image in vector form as a distribution of clusters. Due to such representations, the number of computation and comparison procedures, which are the core of the recognition process, might be reduced tens of times. Respectively, the preprocessing stage takes additional time for clustering. The implementation of the proposed approach was tested on the Leeds Butterfly dataset. The dependence of cluster amount on recognition performance and processing time was investigated. It was proven that recognition may be performed up to nine times faster with only a moderate decrease in quality recognition compared to searching for correspondences between all existing descriptors in etalon images and input one without quantization.


Author(s):  
Juan Zhu ◽  
Jipeng Huang ◽  
Lianming Wang

A novel laser printing files detection method is proposed in this paper to solve the problem of low efficiency and difficulty in traditional detection. The new method is based on improved scale-invariant feature transform (SIFT) feature and histogram feature. Firstly, analyze the graphical features of different laser printing files. Different files have different printing texture features in valid data area. So segment the valid data area to remove the interference of background. Secondly, extract the histogram feature of the same character in the printing file. Normalize the histogram and then calculate the Bhattacharyya coefficient between the detected file and the original file to determine whether the detected file is right or fake. At the same time, calculate the SIFT features and match the detected file and the original file. To focus on the letter or character region, the SIFT features which are out of contour are deleted. Finally, the results of the two different methods are both used as the result of the identification. When any of the result is fake, the end result will be fake. In the self-built database experiment, in different printing files from different printers, the inkjet areas possess different image features. When scanning different files using 600 dpi, the detect accuracy is higher than 97%. This method was able to meet the reliability requirements of law.


2015 ◽  
Vol 4 (3) ◽  
pp. 70-89
Author(s):  
Ramesh Chand Pandey ◽  
Sanjay Kumar Singh ◽  
K K Shukla

Copy-Move is one of the most common technique for digital image tampering or forgery. Copy-Move in an image might be done to duplicate something or to hide an undesirable region. In some cases where these images are used for important purposes such as evidence in court of law, it is important to verify their authenticity. In this paper the authors propose a novel method to detect single region Copy-Move Forgery Detection (CMFD) using Speed-Up Robust Features (SURF), Histogram Oriented Gradient (HOG), Scale Invariant Features Transform (SIFT), and hybrid features such as SURF-HOG and SIFT-HOG. SIFT and SURF image features are immune to various transformations like rotation, scaling, translation, so SIFT and SURF image features help in detecting Copy-Move regions more accurately in compared to other image features. Further the authors have detected multiple regions COPY-MOVE forgery using SURF and SIFT image features. Experimental results demonstrate commendable performance of proposed methods.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1381 ◽  
Author(s):  
Zain Ul Abiden Akhtar ◽  
Hongyu Wang

Driver distraction and fatigue are among the leading contributing factors in various fatal accidents. Driver activity monitoring can effectively reduce the number of roadway accidents. Besides the traditional methods that rely on camera or wearable devices, wireless technology for driver’s activity monitoring has emerged with remarkable attention. With substantial progress in WiFi-based device-free localization and activity recognition, radio-image features have achieved better recognition performance using the proficiency of image descriptors. The major drawback of image features is computational complexity, which increases exponentially, with the growth of irrelevant information in an image. It is still unresolved how to choose appropriate radio-image features to alleviate the expensive computational burden. This paper explores a computational efficient wireless technique that could recognize the attentive and inattentive status of a driver leveraging Channel State Information (CSI) of WiFi signals. In this novel research work, we demonstrate an efficient scheme to extract the representative features from the discriminant components of radio-images to reduce the computational cost with significant improvement in recognition accuracy. Specifically, we addressed the problem of the computational burden by efficacious use of Gabor filters with gray level statistical features. The presented low-cost solution requires neither sophisticated camera support to capture images nor any special hardware to carry with the user. This novel framework is evaluated in terms of activity recognition accuracy. To ensure the reliability of the suggested scheme, we analyzed the results by adopting different evaluation metrics. Experimental results show that the presented prototype outperforms the traditional methods with an average recognition accuracy of 93.1 % in promising application scenarios. This ubiquitous model leads to improve the system performance significantly for the diverse scale of applications. In the realm of intelligent vehicles and assisted driving systems, the proposed wireless solution can effectively characterize the driving maneuvers, primary tasks, driver distraction, and fatigue by exploiting radio-image descriptors.


2011 ◽  
Vol 23 (6) ◽  
pp. 1080-1090 ◽  
Author(s):  
Seiji Aoyagi ◽  
◽  
Atsushi Kohama ◽  
Yuki Inaura ◽  
Masato Suzuki ◽  
...  

For an indoor mobile robot’s Simultaneous Localization And Mapping (SLAM), a method of processing only one monocular image (640×480 pixel) of the environment is proposed. This method imitates a human’s ability to grasp at a glance the overall situation of a room, i.e., its layout and any objects or obstacles in it. Specific object recognition of a desk through the use of several camera angles is dealt with as one example. The proposed method has the following steps. 1) The bag-of-keypoints method is applied to the image to detect the existence of the object in the input image. 2) If the existence of the object is verified, the angle of the object is further detected using the bag-ofkeypoints method. 3) The candidates for the projection from template image to input image are obtained using Scale Invariant Feature Transform (SIFT) or edge information. Whether or not the projected area correctly corresponds to the object is checked using the AdaBoost classifier, based on various image features such as Haar-like features. Through these steps, the desk is eventually extractedwith angle information if it exists in the image.


2021 ◽  
Vol 24 (2) ◽  
pp. 78-86
Author(s):  
Zainab N. Sultani ◽  
◽  
Ban N. Dhannoon ◽  

Image classification is acknowledged as one of the most critical and challenging tasks in computer vision. The bag of visual words (BoVW) model has proven to be very efficient for image classification tasks since it can effectively represent distinctive image features in vector space. In this paper, BoVW using Scale-Invariant Feature Transform (SIFT) and Oriented Fast and Rotated BRIEF(ORB) descriptors are adapted for image classification. We propose a novel image classification system using image local feature information obtained from both SIFT and ORB local feature descriptors. As a result, the constructed SO-BoVW model presents highly discriminative features, enhancing the classification performance. Experiments on Caltech-101 and flowers dataset prove the effectiveness of the proposed method.


Author(s):  
Jun Long ◽  
Qunfeng Liu ◽  
Xinpan Yuan ◽  
Chengyuan Zhang ◽  
Junfeng Liu ◽  
...  

Image similarity measures play an important role in nearest neighbor search and duplicate detection for large-scale image datasets. Recently, Minwise Hashing (or Minhash) and its related hashing algorithms have achieved great performances in large-scale image retrieval systems. However, there are a large number of comparisons for image pairs in these applications, which may spend a lot of computation time and affect the performance. In order to quickly obtain the pairwise images that theirs similarities are higher than the specific thresholdT(e.g., 0.5), we propose a dynamic threshold filter of Minwise Hashing for image similarity measures. It greatly reduces the calculation time by terminating the unnecessary comparisons in advance. We also find that the filter can be extended to other hashing algorithms, on when the estimator satisfies the binomial distribution, such as b-Bit Minwise Hashing, One Permutation Hashing, etc. In this pager, we use the Bag-of-Visual-Words (BoVW) model based on the Scale Invariant Feature Transform (SIFT) to represent the image features. We have proved that the filter is correct and effective through the experiment on real image datasets.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bahar Hatipoglu Yilmaz ◽  
Cemal Kose

Abstract Emotion is one of the most complex and difficult expression to be predicted. Nowadays, many recognition systems that use classification methods have focused on different types of emotion recognition problems. In this paper, we aimed to propose a multimodal fusion method between electroencephalography (EEG) and electrooculography (EOG) signals for emotion recognition. Therefore, before the feature extraction stage, we applied different angle-amplitude transformations to EEG–EOG signals. These transformations take arbitrary time domain signals and convert them two-dimensional images named as Angle-Amplitude Graph (AAG). Then, we extracted image-based features using a scale invariant feature transform method, fused these features originates basically from EEG–EOG and lastly classified with support vector machines. To verify the validity of these proposed methods, we performed experiments on the multimodal DEAP dataset which is a benchmark dataset widely used for emotion analysis with physiological signals. In the experiments, we applied the proposed emotion recognition procedures on the arousal-valence dimensions. We achieved (91.53%) accuracy for the arousal space and (90.31%) for the valence space after fusion. Experimental results showed that the combination of AAG image features belonging to EEG–EOG signals in the baseline angle amplitude transformation approaches enhanced the classification performance on the DEAP dataset.


Sign in / Sign up

Export Citation Format

Share Document