scholarly journals Analysis of Application of Cluster Descriptions in Space of Characteristic Image Features

Data ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 52 ◽  
Author(s):  
Oleksii Gorokhovatskyi ◽  
Volodymyr Gorokhovatskyi ◽  
Olena Peredrii

In this paper, we propose an investigation of the properties of structural image recognition methods in the cluster space of characteristic features. Recognition, which is based on key point descriptors like SIFT (Scale-invariant Feature Transform), SURF (Speeded Up Robust Features), ORB (Oriented FAST and Rotated BRIEF), etc., often relating to the search for corresponding descriptor values between an input image and all etalon images, which require many operations and time. Recognition of the previously quantized (clustered) sets of descriptor features is described. Clustering is performed across the complete set of etalon image descriptors and followed by screening, which allows for representation of each etalon image in vector form as a distribution of clusters. Due to such representations, the number of computation and comparison procedures, which are the core of the recognition process, might be reduced tens of times. Respectively, the preprocessing stage takes additional time for clustering. The implementation of the proposed approach was tested on the Leeds Butterfly dataset. The dependence of cluster amount on recognition performance and processing time was investigated. It was proven that recognition may be performed up to nine times faster with only a moderate decrease in quality recognition compared to searching for correspondences between all existing descriptors in etalon images and input one without quantization.

2011 ◽  
Vol 23 (6) ◽  
pp. 1080-1090 ◽  
Author(s):  
Seiji Aoyagi ◽  
◽  
Atsushi Kohama ◽  
Yuki Inaura ◽  
Masato Suzuki ◽  
...  

For an indoor mobile robot’s Simultaneous Localization And Mapping (SLAM), a method of processing only one monocular image (640×480 pixel) of the environment is proposed. This method imitates a human’s ability to grasp at a glance the overall situation of a room, i.e., its layout and any objects or obstacles in it. Specific object recognition of a desk through the use of several camera angles is dealt with as one example. The proposed method has the following steps. 1) The bag-of-keypoints method is applied to the image to detect the existence of the object in the input image. 2) If the existence of the object is verified, the angle of the object is further detected using the bag-ofkeypoints method. 3) The candidates for the projection from template image to input image are obtained using Scale Invariant Feature Transform (SIFT) or edge information. Whether or not the projected area correctly corresponds to the object is checked using the AdaBoost classifier, based on various image features such as Haar-like features. Through these steps, the desk is eventually extractedwith angle information if it exists in the image.


2017 ◽  
Vol 8 (4) ◽  
pp. 45-58 ◽  
Author(s):  
Mohammed Amin Belarbi ◽  
Saïd Mahmoudi ◽  
Ghalem Belalem

Dimensionality reduction in large-scale image research plays an important role for their performance in different applications. In this paper, we explore Principal Component Analysis (PCA) as a dimensionality reduction method. For this purpose, first, the Scale Invariant Feature Transform (SIFT) features and Speeded Up Robust Features (SURF) are extracted as image features. Second, the PCA is applied to reduce the dimensions of SIFT and SURF feature descriptors. By comparing multiple sets of experimental data with different image databases, we have concluded that PCA with a reduction in the range, can effectively reduce the computational cost of image features, and maintain the high retrieval performance as well


2020 ◽  
Vol 10 (24) ◽  
pp. 8994
Author(s):  
Dong-Hwa Jang ◽  
Kyeong-Seok Kwon ◽  
Jung-Kon Kim ◽  
Ka-Young Yang ◽  
Jong-Bok Kim

Currently, invasive and external radio frequency identification (RFID) devices and pet tags are widely used for dog identification. However, social problems such as abandoning and losing dogs are constantly increasing. A more effective alternative to the existing identification method is required and the biometrics can be the alternative. This paper proposes an effective dog muzzle recognition method to identify individual dogs. The proposed method consists of preprocessing, feature extraction, matching, and postprocessing. For preprocessing, proposed resize and histogram equalization are used. For feature extraction algorithm, Scale Invariant Feature Transform (SIFT), Speeded Up Robust Features (SURF), Binary Robust Invariant Scaling Keypoints (BRISK) and Oriented FAST, and Rotated BRIEF (ORB) are applied and compared. For matching, Fast Library for Approximate Nearest Neighbors (FLANN) is used for SIFT and SURF, and hamming distance are used for BRISK and ORB. For postprocessing, two techniques to reduce incorrect matches are proposed. The proposed method was evaluated with 55 dog muzzle pattern images acquired from 11 dogs and 990 images augmented by the image deformation (i.e., angle, illumination, noise, affine transform). The best Equal Error Rate (EER) of the proposed method was 0.35%, and ORB was the most appropriate for the dog muzzle pattern recognition.


2015 ◽  
Vol 4 (3) ◽  
pp. 70-89
Author(s):  
Ramesh Chand Pandey ◽  
Sanjay Kumar Singh ◽  
K K Shukla

Copy-Move is one of the most common technique for digital image tampering or forgery. Copy-Move in an image might be done to duplicate something or to hide an undesirable region. In some cases where these images are used for important purposes such as evidence in court of law, it is important to verify their authenticity. In this paper the authors propose a novel method to detect single region Copy-Move Forgery Detection (CMFD) using Speed-Up Robust Features (SURF), Histogram Oriented Gradient (HOG), Scale Invariant Features Transform (SIFT), and hybrid features such as SURF-HOG and SIFT-HOG. SIFT and SURF image features are immune to various transformations like rotation, scaling, translation, so SIFT and SURF image features help in detecting Copy-Move regions more accurately in compared to other image features. Further the authors have detected multiple regions COPY-MOVE forgery using SURF and SIFT image features. Experimental results demonstrate commendable performance of proposed methods.


2021 ◽  
Vol 24 (2) ◽  
pp. 78-86
Author(s):  
Zainab N. Sultani ◽  
◽  
Ban N. Dhannoon ◽  

Image classification is acknowledged as one of the most critical and challenging tasks in computer vision. The bag of visual words (BoVW) model has proven to be very efficient for image classification tasks since it can effectively represent distinctive image features in vector space. In this paper, BoVW using Scale-Invariant Feature Transform (SIFT) and Oriented Fast and Rotated BRIEF(ORB) descriptors are adapted for image classification. We propose a novel image classification system using image local feature information obtained from both SIFT and ORB local feature descriptors. As a result, the constructed SO-BoVW model presents highly discriminative features, enhancing the classification performance. Experiments on Caltech-101 and flowers dataset prove the effectiveness of the proposed method.


Author(s):  
Neerja Mittal ◽  
Ekta Walia ◽  
Chandan Singh

It is well known that the careful selection of a set of features, with higher discrimination competence, may increase recognition performance. In general, the magnitude coefficients of some selected orders of ZMs and PZMs have been used as invariant image features. The authors have used a statistical method to estimate the discrimination strength of all the coefficients of ZMs and PZMs. For classification, only the coefficients with estimated higher discrimination strength are selected and are used in the feature vector. The performance of these selected Discriminative ZMs (DZMs) and Discriminative PZMs (DPZMs) features are compared to that of their corresponding conventional approaches on YALE, ORL, and FERET databases against illumination, expression, scale, and pose variations. In this chapter, an extension to these DZMs and DPZMs is presented by exploring the use of phase information along with the magnitude coefficients of these approaches. As the phase coefficients are computed in parallel to the magnitude, no additional time is spent on their computation. Further, DZMs and DPZMs are also combined with PCA and FLD. It is observed from the exhaustive experimentation that with the inclusion of phase features the recognition rate is improved by 2-8%, at reduced dimensions and with less computational complexity, than that of using the successive ZMs and PZMs features.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Nirvair Neeru ◽  
Lakhwinder Kaur

The main goal of this work is to develop a fully automatic face recognition algorithm. Scale Invariant Feature Transform (SIFT) has sparingly been used in face recognition. In this paper, a Modified SIFT (MSIFT) approach has been proposed to enhance the recognition performance of SIFT. In this paper, the work is done in three steps. First, the smoothing of the image has been done using DWT. Second, the computational complexity of SIFT in descriptor calculation is reduced by subtracting average from each descriptor instead of normalization. Third, the algorithm is made automatic by using Coefficient of Correlation (CoC) instead of using the distance ratio (which requires user interaction). The main achievement of this method is reduced database size, as it requires only neutral images to store instead of all the expressions of the same face image. The experiments are performed on the Japanese Female Facial Expression (JAFFE) database, which indicates that the proposed approach achieves better performance than SIFT based methods. In addition, it shows robustness against various facial expressions.


Sign in / Sign up

Export Citation Format

Share Document