Laser Printing Files Detection Method Based on Double Features

Author(s):  
Juan Zhu ◽  
Jipeng Huang ◽  
Lianming Wang

A novel laser printing files detection method is proposed in this paper to solve the problem of low efficiency and difficulty in traditional detection. The new method is based on improved scale-invariant feature transform (SIFT) feature and histogram feature. Firstly, analyze the graphical features of different laser printing files. Different files have different printing texture features in valid data area. So segment the valid data area to remove the interference of background. Secondly, extract the histogram feature of the same character in the printing file. Normalize the histogram and then calculate the Bhattacharyya coefficient between the detected file and the original file to determine whether the detected file is right or fake. At the same time, calculate the SIFT features and match the detected file and the original file. To focus on the letter or character region, the SIFT features which are out of contour are deleted. Finally, the results of the two different methods are both used as the result of the identification. When any of the result is fake, the end result will be fake. In the self-built database experiment, in different printing files from different printers, the inkjet areas possess different image features. When scanning different files using 600 dpi, the detect accuracy is higher than 97%. This method was able to meet the reliability requirements of law.

2019 ◽  
Vol 43 (2) ◽  
pp. 270-276
Author(s):  
C. Rajalakshmi ◽  
Al.M. Germanus ◽  
R. Balasubramanian

The most important barrier in the image forensic is to ensue a forgery detection method such can detect the copied region which sustains rotation, scaling reflection, compressing or all. Traditional SIFT method is not good enough to yield good result. Matching accuracy is not good. In order to improve the accuracy in copy move forgery detection, this paper suggests a forgery detection method especially for copy move attack using Key Point Localized Super Pixel (KLSP). The proposed approach harmonizes both Super Pixel Segmentation using Lazy Random Walk (LRW) and Scale Invariant Feature Transform (SIFT) based key point extraction. The experimental result indicates the proposed KLSP approach achieves better performance than the previous well known approaches.


2012 ◽  
Vol 424-425 ◽  
pp. 784-788
Author(s):  
Yang Yu ◽  
Min Zhang ◽  
Guo Hua Zhang ◽  
Jie Niu

Based on the algorithm of Scale invariant feature transform SIFT, informed a method to detection the airport runway foreign objects based on the algorithm of improved SIFT, first roughly extracts object through the image segmentation algorithm, then match the object on it’s SIFT features, ensure it’s features stability, enhance the matching accuracy. Experimental results show that this method can not only handle the problems of tar-get losing evidently, which are induced by objects rotation and translation, but also has nice robustness to the conjunction of multi-targets in the process of object tracking


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Yang Zhang ◽  
Chaoyue Chen ◽  
Zerong Tian ◽  
Yangfan Cheng ◽  
Jianguo Xu

Objectives. To differentiate pituitary adenoma from Rathke cleft cyst in magnetic resonance (MR) scan by combing MR image features with texture features. Methods. A total number of 133 patients were included in this study, 83 with pituitary adenoma and 50 with Rathke cleft cyst. Qualitative MR image features and quantitative texture features were evaluated by using the chi-square tests or Mann–Whitney U test. Binary logistic regression analysis was conducted to investigate their ability as independent predictors. ROC analysis was conducted subsequently on the independent predictors to assess their practical value in discrimination and was used to investigate the association between two types of features. Results. Signal intensity on the contrast-enhanced image was found to be the only significantly different MR image feature between the two lesions. Two texture features from the contrast-enhanced images (Histo-Skewness and GLCM-Correlation) were found to be the independent predictors in discrimination, of which AUC values were 0.80 and 0.75, respectively. Besides, the above two texture features (Histo-Skewness and GLCM-Contrast) were suggested to be associated with signal intensity on the contrast-enhanced image. Conclusion. Signal intensity on the contrast-enhanced image was the most significant MR image feature in differentiation between pituitary adenoma and Rathke cleft cyst, and texture features also showed promising and practical ability in discrimination. Moreover, two types of features could be coordinated with each other.


2021 ◽  
Vol 8 (7) ◽  
pp. 97-105
Author(s):  
Ali Ahmed ◽  
◽  
Sara Mohamed ◽  

Content-Based Image Retrieval (CBIR) systems retrieve images from the image repository or database in which they are visually similar to the query image. CBIR plays an important role in various fields such as medical diagnosis, crime prevention, web-based searching, and architecture. CBIR consists mainly of two stages: The first is the extraction of features and the second is the matching of similarities. There are several ways to improve the efficiency and performance of CBIR, such as segmentation, relevance feedback, expansion of queries, and fusion-based methods. The literature has suggested several methods for combining and fusing various image descriptors. In general, fusion strategies are typically divided into two groups, namely early and late fusion strategies. Early fusion is the combination of image features from more than one descriptor into a single vector before the similarity computation, while late fusion refers either to the combination of outputs produced by various retrieval systems or to the combination of different rankings of similarity. In this study, a group of color and texture features is proposed to be used for both methods of fusion strategies. Firstly, an early combination of eighteen color features and twelve texture features are combined into a single vector representation and secondly, the late fusion of three of the most common distance measures are used in the late fusion stage. Our experimental results on two common image datasets show that our proposed method has good performance retrieval results compared to the traditional way of using single features descriptor and also has an acceptable retrieval performance compared to some of the state-of-the-art methods. The overall accuracy of our proposed method is 60.6% and 39.07% for Corel-1K and GHIM-10K ‎datasets, respectively.


Author(s):  
Mengmeng Liu

Abstract The rails usually work in complex environments, which makes them more prone to mechanical failures. In order to better diagnose the crack faults, a multi-population state optimization algorithm (MPVHGA) is proposed in this paper, which is used to solve the problems of low efficiency, easy precocity, and easy convergence of local optimal solutions in traditional genetic algorithms. The detection results of fault signals show that MPVHGA has the advantages of fast convergence rate, high stability, no stagnation, and no limitation of fixed iterations number. The average iterations number of MPVHGA in 100 independent iterations is about 1/5 of the traditional genetic algorithm (SGA for short) and about 1/3 of the population state optimization algorithm (VHGA for short), and the total convergence number of MPVHGA converges to 55 and 10 more than SGA and VHGA respectively, and the accuracy of fault diagnosis can reach 95.04%. On the basis of improving the performance of simple genetic algorithm, this paper provides a new detection method for rail crack fault diagnosis, which has important engineering practical value.


2021 ◽  
pp. 20200384
Author(s):  
Zhe-Yi Jiang ◽  
Tian-Jun Lan ◽  
Wei-Xin Cai ◽  
Qian Tao

Objective: To screen the radiomic features of simple bone cysts of the jaws and explore the potential application of radiomics in pre-operative diagnosis of jaw simple bone cysts. Methods: The investigators designed and implemented a case–control study. 19 patients with simple bone cysts who were admitted to the Department of Maxillofacial Surgery, Sun Yat-sen University Affiliated Stomatology Hospital from 2013 to 2019 were included in this study. Their clinical data and cone-beam computed tomography (CBCT) images were examined. The control group consisted of patients with odontogenic keratocyst. CBCT imaging features were analyzed and compared between the patient and control groups. Results: Overall, 10,323 image features were extracted through feature analysis. A subset of 25 radiomic features obtained after feature selection were analyzed further. These 25 features were significantly different between the 2 groups (p < 0.05). The absolute value of correlation coefficient was 0.487–0.775. Gray-level co-occurrence matrix (GLCM) contrast, neighborhood gray tone difference matrix (NGTDM) contrast, and GLCM variance were the features with the highest correlation coefficients. Conclusions: Pre-operative radiomics analysis showed the differences between simple bone cysts and odontogenic keratocysts, can help to diagnose simple bone cysts. Three specific texture features—GLCM contrast, NGTDM contrast, and GLCM variance—may be the characteristic imaging features of simple bone cysts of the jaw.


2015 ◽  
Vol 4 (3) ◽  
pp. 70-89
Author(s):  
Ramesh Chand Pandey ◽  
Sanjay Kumar Singh ◽  
K K Shukla

Copy-Move is one of the most common technique for digital image tampering or forgery. Copy-Move in an image might be done to duplicate something or to hide an undesirable region. In some cases where these images are used for important purposes such as evidence in court of law, it is important to verify their authenticity. In this paper the authors propose a novel method to detect single region Copy-Move Forgery Detection (CMFD) using Speed-Up Robust Features (SURF), Histogram Oriented Gradient (HOG), Scale Invariant Features Transform (SIFT), and hybrid features such as SURF-HOG and SIFT-HOG. SIFT and SURF image features are immune to various transformations like rotation, scaling, translation, so SIFT and SURF image features help in detecting Copy-Move regions more accurately in compared to other image features. Further the authors have detected multiple regions COPY-MOVE forgery using SURF and SIFT image features. Experimental results demonstrate commendable performance of proposed methods.


Sign in / Sign up

Export Citation Format

Share Document