scholarly journals MMS Virtual Manufacturing Devices generation: The Paris subway example

Author(s):  
E. Rondeau ◽  
T. Divoux ◽  
F. Lepage ◽  
M. Veron
Materials ◽  
2003 ◽  
Author(s):  
Weilong Chen

In recent years, high-pressure die-casting magnesium components have been gaining currency worldwide because of the excellent properties that magnesium alloys can offer to meet new product requirements. With the increasing application of magnesium parts worldwide, many research and development projects have been carried out to advance HPDC technology. However, truly optimized mold design and production of defect free castings remains a challenge for die casters. For many HPDC magnesium products, especially those specified for porosity-free and high cosmetic requirement, the challenge not only comes form a lack of a deeper understanding of how molten magnesium alloys fill the mold cavity and form defects, but also from improper preliminary part design. This study proposes a virtual prototyping system that integrates several effective soft and hardware tools for both the part and mold-design engineer to evaluate part manufacturability. Also, investigated in this study are the major causes of those defects that are the predominant cause of rejection of thin walled, leak-free magnesium parts requiring highly cosmetic finishes.


Author(s):  
Yang Jie ◽  
Li Haitao ◽  
Rui Chengjie ◽  
Wei Wenjun ◽  
Dong Xuezhu

All of the cutting edges on an hourglass worm gear hob have different shapes and spiral angles. If the spiral angles are small, straight flutes are usually adopted. But for the hob with multiple threads, the absolute values of the negative rake angles at one side of the cutting teeth will greatly affect the cutting performance of the hob if straight flutes are still used. Therefore, spiral flutes are usually adopted to solve the problem. However, no method of determination of the spiral flute of the hourglass worm gear hob has been put forward till now. Based on the curved surface generating theory and the hourglass worm forming principle, a generating method for the spiral flute of the planar double enveloping worm gear hob is put forward in this paper. A mathematical model is built to generate the spiral flute. The rake angles of all cutting teeth of the hob are calculated. The laws of the rake angles of the cutting teeth of four hobs with different threads from one to four threads are analyzed when straight flutes and spiral flutes are adopted respectively. The laws between the value of the negative rake angles of the hob with four threads and the milling transmission ratio are studied. The most appropriate milling transmission ratio for generating the spiral flute is obtained. The machining of the spiral flutes is simulated by a virtual manufacturing system and the results verify the correctness of the method.


Author(s):  
Kamran Forghani ◽  
S. M. T. Fatemi Ghomi ◽  
Reza Kia

Cell formation, scheduling, and facility layout are three main decisions in designing manufacturing cells. In this paper, we address the integration of these decisions in virtual manufacturing cells considering assembly aspects and process routing. We develop a mathematical model to determine the machine cells, the layout of machines and workstations on the shop floor, the processing route of parts, and the production sequence of operations on the machines. In this mathematical model, material handling costs and cycle time are minimized. To the best of our knowledge, this is the first paper that concurrently addresses the scheduling and layout of virtual manufacturing cells with assembly aspects and so-called criteria. To effectively solve the problem, a Population-based Simulated Annealing (PSA) combined with linear programming is proposed. The practical usability of the developed model is demonstrated in a case study. Finally, instances from the literature are solved to evaluate the performance of the PSA. The comparison results showed the superior performance of the PSA in comparison with CPLEX solver and standard simulated annealing.


1999 ◽  
Author(s):  
Dan Zetu ◽  
Pat Banerjee ◽  
Ali Akgunduz

Abstract The fast construction of a Virtual Factory model without using a CAD package can be made possible by using computer vision techniques. In order to create a realistic Virtual Manufacturing environment, especially when such a model has to be created in correlation to an existing facility, a reliable algorithm that extracts 3D models from camera images is needed, and this requires exact knowledge of the camera location when capturing images. In this paper, we describe an approach for depth recovery from 2D images based on tracking a camera within the environment. We also explore the extension of our telemetry-based algorithm to remote facility management, by tracking and synchronizing human motion on the shop floor with motion of an avatar in a Virtual Environment representing the same shop floor.


2000 ◽  
Author(s):  
Yeong Sung Suh ◽  
Jong Sung Ahn ◽  
Sun Woong Choi ◽  
Hyun Ki Park ◽  
Yong Jin Kim ◽  
...  

Abstract To construct the CICC for the superconducting Tokamak fusion device, the 3-roll bending, that inherently has a difficulty to form the coil with accurate radius of curvature, is used for continuous winding. In order to obtain precise dimension, a trial-an-error operation is inevitable. To reduce the effort of tryout, a relation between travel of the bending roller and spring back displacement was obtained via virtual manufacturing. The radius of CICC after forming was expressed as a function of the bend-roll travel. Next, the variation of the CICC cross-section (reduction of the conduit cross-section) was investigated during the first turn and during conduit bending with largest curvature. With largest curvature, the cross-sectional area was not much reduced. Finally, the residual stress on the CICC before roll bending was measured in order to examine the influence of the original residual stress on the final deformation behavior. The principal stress and von Mises stress were measured at the surface of CICC using specially designed strain gauge. The measured values were considered in the virtual forming. The results indicate that the residual stresses generated during the fabrication of the CICC (before coiling) do not have much influence on the final stress state.


Author(s):  
Ismail Fidan ◽  
Adam McGough ◽  
Jeff Foote

Formula SAE (FSAE) is a design competition organized each year by the Society of Automotive Engineers (SAE). The objective of the competition is to bring the best and brightest future engineers from each participating school to present a small scale race car. Although this sounds like a relatively simple concept, the actual execution is rather challenging and rewarding for the team. For almost three years Tennessee Tech University (TTU) has had a FSAE team. The first year was a planning year, so Tennessee Tech University has participated in the competition for the last two years. Both years have been extreme learning experiences since TTU was not prepared for the level of competition brought by participating schools. However TTU FSAE team is beginning to implement modern design tools such as FEA, Virtual Manufacturing, and Rapid Prototyping to help streamline the design efforts so that one day Golden Eagle FSAE will be one of the top competing teams. In this publication, authors will report on one Golden Eagle FSAE component (the rear upright) development stages and its accomplishments.


Sign in / Sign up

Export Citation Format

Share Document