Predicting Thermooxidative Degradation and Performance of High-Temperature Polymer Matrix Composites

Author(s):  
G. A. Schoeppner ◽  
G. P. Tandon ◽  
K. V. Pochiraju
2021 ◽  
Author(s):  
Alireza Sayyidmousavi

Polymer matrix composites (PMC’s) are widely used in critical aerospace structures due to their numerous advantageous mechanical properties. Recently, PMC’s have been considered for high temperature applications where viscoelasticity arising from the time dependent nature of the polymer matrix becomes an important consideration. This inherent viscoelasticity can significantly influence deformation, strength and failure response of these materials under different loading modes and environmental factors. With a potentially large number of plies of different fiber directions and perhaps material properties, determining a fatigue failure criterion of any degree of generality through experiments only, may seem to be an unrealistic task. This difficult situation may be mitigated through the development of suitable theoretical micro or macro mechanical models that are founded on considering the fatigue failure of the constituting laminas. The micro‐approach provides a detailed examination of the individual failure modes in each of the constituent materials i.e. fiber, matrix. In this work, a micromechanical approach is used to study the role of viscoelasticity on the fatigue behavior of polymer matrix composites. In particular, the study examines the interaction of fatigue and creep in polymer matrix composites. The matrix phase is modeled as a vicoelastic material using Schapery’s single integral constitutive equation. Taking viscoelsticity into account allows the study of creep strain evolution during the fatigue loading. The fatigue failure criterion is expressed in terms of the fatigue failure functions of the constituent materials. The micromechanical model is also used to calculate these fatigue failure functions from the knowledge of the S‐N diagrams of the composite material in longitudinal, transverse and shear loadings thus eliminating the need for any further experimentation. Unlike the previous works, the present study can distinguish between the strain evolution due to fatigue and creep. The results can clearly show the contribution made by the effect of viscoelasticity to the total strain evolution during the fatigue life of the specimen. Although the effect of viscoelsticity is found to increase with temperature, its contribution to strain development during fatigue is compromised by the shorter life of the specimen when compared to lower temperatures.


2019 ◽  
Vol 7 (46) ◽  
pp. 14471-14492
Author(s):  
David B. Lioi ◽  
Vikas Varshney ◽  
Sarah Izor ◽  
Gregory Neher ◽  
W. Joshua Kennedy

We provide a broad review of optically responsive materials with potential for in situ monitoring of material state properties in structural polymer-based materials with nanoscale spatial resolution.


2006 ◽  
Vol 324-325 ◽  
pp. 663-666 ◽  
Author(s):  
Maciej S. Kumosa

In this work, potential problems with the application of polymer matrix composites (PMC) in extreme environments [1] is discussed. Then, two specific examples of the applications of PMCs in high voltage [2-7] and high temperature [8-15] situations are evaluated. The first example deals with damage evolution in high voltage composite insulators [2-7] with PMC rods subjected to a combined action of extreme mechanical, electrical and environmental stresses. These insulators are widely used in transmission line and substation applications around the world. Subsequently, advanced high temperature graphite/polyimide composites [8-15] are evaluated for aerospace applications. The composite investigated in this project were used to manufacture and successfully test a Rocket Based Combined Cycle (RBCC) third-generation, reusable liquid propellant rocket engine, which is one possible engine for a future single-stage-to-orbit vehicle [8].


2013 ◽  
Vol 33 (4) ◽  
pp. 380-388 ◽  
Author(s):  
Alireza Sayyidmousavi ◽  
Habiba Bougherara ◽  
Seyed Reza Falahatgar ◽  
Zouheir Fawaz

Author(s):  
Nathan Salowitz ◽  
Yu-Hung Li ◽  
Sang-Jong Kim ◽  
Surajit Roy ◽  
Fu-Kuo Chang

High-temperature polymer-matrix composites (PMCs) are necessary and critical for the development of supersonic aircraft and orbital re-entry vehicles because of the need for light-weight design, high strength-to-weight ratios and high thermal stability in structures. Damage detection is a primary concern in composite structures because they are prone to multiple damage forms that can be hidden within the structure. Damage can include matrix cracking, fiber breakage, and delamination which can be caused by impacts, fatigue, or overloading. To overcome these shortfalls highly damage tolerant structures are employed to improve the safety of structures. Unfortunately this requires additional, potentially unnecessary, structural weight which is detrimental to aerospace structures. Acoustic ultrasound based structural health monitoring (SHM) has demonstrated the ability to overcome these problems by using arrays of Lead Zirconate Titanate piezoelectric transducers typically mounted on a flex circuit all of which is permanently affixed to, or embedded within, a structure [1] [2] [3] [4]. These transducers can excite and detect ultrasonic wave propagation in the structure and diagnostic algorithms, interpreting the signals, have been developed enabling real time inspection for damage. However, modern SHM systems are not capable of surviving the high temperatures experienced in the fabrication and service of High-temperature polymer matrix composites. In particular the Lead Zirconate Titanate piezoelectric elements typically depolarize and lose their functionality at around 200°C [5] [6]. Additionally, current SHM diagnostic algorithms are dependent on baseline data to compare signals to. These signals change with temperature and even just a few degree change can be detrimental to the system’s abilities. The current method for enabling functionality over a range of temperatures is to take numerous sets of baseline data at very high resolution across a range of temperatures. In order to adapt SHM for high temperature composites new piezoelectric materials must be developed capable of surviving elevated fabrication and operational temperatures. Small scale network components must be integrated to reduce detrimental effects of embedding SHM systems within the composite layup [7] [8] [9]. Additionally, methods for reducing the number of baseline data sets in the diagnostic algorithms must be developed. This paper presents development and testing of Bismuth Scandium Lead Titanate piezo ceramic transducers for high temperature SHM. These transducers are incorporated into a stretchable network system and mounted on a glass backing. Functionality is tested using a commercially available data acquisition system designed for SHM and intended for use with PZT transducers. Ongoing development of temperature compensation algorithms is also presented herein.


Sign in / Sign up

Export Citation Format

Share Document