Induction of Haploid Embryos in Datura metel by Anther Culture

Author(s):  
Kolitha B. Wijesekara ◽  
Mohammed C. M. Iqbal
HortScience ◽  
1993 ◽  
Vol 28 (3) ◽  
pp. 216-217 ◽  
Author(s):  
David J. Wolyn ◽  
Xiaorong Feng

Asparagus (Asparagus officinalis L.) anthers from flowers of field-grown plants were cultured for five genotypes, four incubation temperatures, and three sampling dates. Treatments were evaluated for total and embryogenic callus production. Incubating anthers at 35C was optimal for initiating embryogenic callus for three genotypes. Another line performed best and equally well at 29 and 32C, while one was recalcitrant to embryogenic callus formation at the temperatures evaluated. For all genotypes, almost half of the anthers produced callus for at least one temperature treatment, hut the percentage of these calli that was embryogenic ranged from 0% to 50%. Sampling date affected response only for specific genotype-temperature combinations. Embryo recovery ranged from six to 14 per callus. For the four responsive genotypes, 77% to 100% of plantlets was haploid. Culturing anthers at several temperatures ranging from 29 to 35C, with repeated samplings of flowers from the field, likely will allow recovery of haploid embryos from many selections. This result will expand the germplasm base to develop all-male asparagus hybrids.


2007 ◽  
Vol 164 (12) ◽  
pp. 1595-1604 ◽  
Author(s):  
Beatriz Pintos ◽  
Jose A. Manzanera ◽  
Maria A. Bueno

2017 ◽  
Vol 23 (2) ◽  
Author(s):  
SANJAY A. KHAIRNAR

In modern era about 80% of the world population depends on herbal alternative system of medicine. Seventy thousand plants are used in medicine and about 2000 plants are used in Indian Ayurveda. The activities of the curative plants are evaluated by their chemical components. Few of them are important as a medicine but also posses poisonous or toxic properties. The toxicity is produced in them due to the synthesis of toxic chemical compounds may be in primary or secondary phase of their life. Most of the users of such medicinal plants in crude form are tribal and peoples living in the forests and their domestic stock . Most of the time these peoples may not aware about the toxicity of such plants used by them and probably get affected sometimes even leads to death. In the study area during the field survey of poisonous plants, information are gathered from the traditional practicing persons, cow boy and from shepherds. About 20 plant species belonging to 17 families are reported as a medicinal as well as toxic. From the available literature, nature of toxic compound and symptoms of their intake on human being are recorded. In the study area the plants like, Abrus precatorious commonly known as a Gunj or Gunjpala, Jatropha curcas , (Biodiesel plant), Croton tiglium (Jamalgota), Citrullus colocynthis (Kadu Indrawan, Girardinia diversifolia (Agya), Mucuna purriens (Khajkuairi), Euphorbia tirucali (Sher), E. ligularia (Sabarkand), Datura metel ( Kala Dhotara), Datura inoxia (Pandhara Dhotara) and Asparagus racemo-sus (Shatavari) etc . are some of the toxic plants used as a medicine and harmful also.


Growth regulators, phytohormones, both natural and artificial, are the main means to control plant ontogenesis. They are involved in regulating the processes of cell differentiation and cell divisions, the formation of tissues and organs, the changes in the rate of growth and development, the duration of the certain stages of ontogenesis. The main classes of phytohormones used in plant biotechnology, in particular, in the induction of haploid structures, are auxins and cytokinins. The mechanism of action of phytohormones on a cell is rather complicated and may have a different character. Understanding the characteristics of the action of phytohormones is complicated by the fact that the system of hormonal regulation of plant life is multicomponent. This is manifested in the fact that the same physiological process is most often influenced not by one, but by several phytohormones, covering a wide range of aspects of cell metabolism. In connection with the foregoing, the purpose of our work was to test a set of nutrient media with different basic composition and different proportions of phytohormones to determine the patterns of their influence on the processes of haploid structure induction in rape anther culture using accessions, developed at the Institute of Oilseed Crops NAAS. The material used was two accessions of winter rapeseed (No. 1 and No. 2) and one sample of spring rapeseed, provided by the Rapeseed Breeding laboratory of the Institute of Oilseed Crops. Incised inflorescences were kept against the background of low temperature of 6–8 ° C for several days, and then, under aseptic conditions, anthers with unripe pollen grains were isolated and planted on nutrient media differing in both basic mineral composition and content of phytohormones. MS (Murashige & Skoog 1962) and B5 (Gamborg et al 1968) media were used as basic media. Phytohormones were added to the basic media in various combinations – BA, 2,4-D, NAA at the concentrations of 0.1-0.6 mg/l. In each treatment up to 300 anthers were cultivated. Differences between treatments were evaluated using standard t-test. Studies have shown that in the anther culture of rapeseed on the tested nutrient media, morphogenic structures of different types (embryoids and callus) were originated. Synthetic auxin 2,4-D, regardless of the composition of the basic medium, caused the formation of structures of both types, though with a low frequency. Phytohormone BA of the cytokinin type had a similar effect. In this case, the frequency of structures was slightly higher, and the developed structures were represented mainly by embryoids. The joint action of cytokinin and auxin was the most favorable for the initiation of morphogenic structures. Such combination of phytohormones caused the formation of these structures with a frequency of 24.5-14.7% in the studied genotypes of winter rape. A similar effect of phytohormones on the induction and development of morphogenic structures was also observed in spring rape. In this case, a single basic MS medium was used. The experiment included treatments where phytohormones were absent (control), as well as various combinations of auxin and cytokinin. In the control treatment, the formation of new structures was not noted. In treatments with phytohormones, in addition to the medium with the combination of auxin and cytokinin, the medium in which only cytokinin was present was also rather effective. The treatment in which the action of auxin 2,4-D was combined with the action of another auxin, NAA, turned out to be practically ineffective. Thus, it was found that for the induction of morphogenic structures from microspores in rape anther culture of the tested genotypes, the combination of cytokinin with auxin, or the use of only single cytokinin BA without other phytohormones, had the most positive effect.


Crop Science ◽  
1987 ◽  
Vol 27 (2) ◽  
pp. 351-354 ◽  
Author(s):  
J. E. Marburger ◽  
D. J. Sammons ◽  
G. W. Schaeffer
Keyword(s):  

2007 ◽  
Vol 45 (1) ◽  
pp. 54-61 ◽  
Author(s):  
Krystyna Górecka ◽  
Milena Cvikrová ◽  
Urszula Kowalska ◽  
Josef Eder ◽  
Katarzyna Szafrańska ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document