An Axis of Rotation Analyser

Author(s):  
P. Vanherck ◽  
J. Peters
Keyword(s):  
1972 ◽  
Vol 1 ◽  
pp. 77-85
Author(s):  
H.J.M. Abraham ◽  
J.N. Boots

This paper suggests that some of the reported changes in the Chandler frequency are associated with inelastic changes in the Earth. There has been controversy as to how much of the apparent secular polar drift is due to actual motion of the axis of rotation within the Earth, and how much it is merely the reflection of movements by certain observatories. Therefore, when more southern data are available it will be interesting to see whether similar results are obtained.


1975 ◽  
Vol 26 ◽  
pp. 87-92
Author(s):  
P. L. Bender

AbstractFive important geodynamical quantities which are closely linked are: 1) motions of points on the Earth’s surface; 2)polar motion; 3) changes in UT1-UTC; 4) nutation; and 5) motion of the geocenter. For each of these we expect to achieve measurements in the near future which have an accuracy of 1 to 3 cm or 0.3 to 1 milliarcsec.From a metrological point of view, one can say simply: “Measure each quantity against whichever coordinate system you can make the most accurate measurements with respect to”. I believe that this statement should serve as a guiding principle for the recommendations of the colloquium. However, it also is important that the coordinate systems help to provide a clear separation between the different phenomena of interest, and correspond closely to the conceptual definitions in terms of which geophysicists think about the phenomena.In any discussion of angular motion in space, both a “body-fixed” system and a “space-fixed” system are used. Some relevant types of coordinate systems, reference directions, or reference points which have been considered are: 1) celestial systems based on optical star catalogs, distant galaxies, radio source catalogs, or the Moon and inner planets; 2) the Earth’s axis of rotation, which defines a line through the Earth as well as a celestial reference direction; 3) the geocenter; and 4) “quasi-Earth-fixed” coordinate systems.When a geophysicists discusses UT1 and polar motion, he usually is thinking of the angular motion of the main part of the mantle with respect to an inertial frame and to the direction of the spin axis. Since the velocities of relative motion in most of the mantle are expectd to be extremely small, even if “substantial” deep convection is occurring, the conceptual “quasi-Earth-fixed” reference frame seems well defined. Methods for realizing a close approximation to this frame fortunately exist. Hopefully, this colloquium will recommend procedures for establishing and maintaining such a system for use in geodynamics. Motion of points on the Earth’s surface and of the geocenter can be measured against such a system with the full accuracy of the new techniques.The situation with respect to celestial reference frames is different. The various measurement techniques give changes in the orientation of the Earth, relative to different systems, so that we would like to know the relative motions of the systems in order to compare the results. However, there does not appear to be a need for defining any new system. Subjective figures of merit for the various system dependon both the accuracy with which measurements can be made against them and the degree to which they can be related to inertial systems.The main coordinate system requirement related to the 5 geodynamic quantities discussed in this talk is thus for the establishment and maintenance of a “quasi-Earth-fixed” coordinate system which closely approximates the motion of the main part of the mantle. Changes in the orientation of this system with respect to the various celestial systems can be determined by both the new and the conventional techniques, provided that some knowledge of changes in the local vertical is available. Changes in the axis of rotation and in the geocenter with respect to this system also can be obtained, as well as measurements of nutation.


Author(s):  
Mickey E. Gunter ◽  
F. Donald Bloss

A single, reasonably homogeneous, nonopaque 30-to-300 μm crystal, mounted on a spindle stage and studied by immersion methods under a polarizing microscope, yields optical data frequently sufficient to identify and characterize a substance unequivocally. The data obtainable include (1) the orientation of the crystal's principal vibration axes and (2) its principal refractive indices, to within 0.0002 if desired, for light vibrating along these principal vibration axes. Spindle stages tend to be simple and relatively inexpensive, some costing less than $50. They permit rotation of the crystal about a single axis which is parallel to the microscope stage. This spindle or S-axis is thus perpendicular to the M-axis, namely the microscope stage's axis of rotation.A spindle stage excels when studying anisotropic crystals. It orients uniaxial crystals within minutes and biaxial crystals almost as quickly so that their principal refractive indices - ɛ and ω (uniaxial); α, β and γ (biaxial) - can be determined without significant error from crystal misorientation.


Chemistry ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 28-38
Author(s):  
Josep M. Oliva-Enrich ◽  
Ibon Alkorta ◽  
José Elguero ◽  
Maxime Ferrer ◽  
José I. Burgos

By following the intrinsic reaction coordinate connecting transition states with energy minima on the potential energy surface, we have determined the reaction steps connecting three-dimensional hexaborane(12) with unknown planar two-dimensional hexaborane(12). In an effort to predict the potential synthesis of finite planar borane molecules, we found that the reaction limiting factor stems from the breaking of the central boron-boron bond perpendicular to the C2 axis of rotation in three-dimensional hexaborane(12).


Open Physics ◽  
2003 ◽  
Vol 1 (4) ◽  
Author(s):  
A. Pavlov ◽  
Y. Pavlova

AbstractThe formation of Saturn and its disk is simulated using a new N-body self-gravitational model. It is demonstrated that the formation of the disk and the planet is the result of gravitational contraction of a slowly rotated particle cloud that have a shape of slightly deformed sphere. The sphere was flattened by a coefficient of 0.8 along the axis of rotation. During the gravitational contraction, the major part of the cloud transformed into a planet and a minor part transformed into a disk. The thin structured disk is a result of the electromagnetic interaction in which the magnetic forces acting on charged particles of the cloud originate in the core of the planet. The simulation program gives such parameters of Saturn as the escape velocity of about 35 km/s at the surface, density, rotational velocities of the rings and temperature distribution.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vicente Salinas ◽  
Cristóbal Quiñinao ◽  
Sebastián González ◽  
Gustavo Castillo

AbstractWe study the role of small-scale perturbations in the onset of avalanches in a rotating drum in the stick-slip regime. By vibrating the system along the axis of rotation with an amplitude orders of magnitude smaller than the particles’ diameter, we found that the order parameter that properly describes the system is the kinetic energy. We also show that, for high enough frequencies, the onset of the avalanche is determined by the amplitude of the oscillation, contrary to previous studies that showed that either acceleration or velocity was the governing parameter. Finally, we present a theoretical model that explains the transition between the continuous and discrete avalanche regimes as a supercritical Hopf bifurcation.


2016 ◽  
Vol 16 (10) ◽  
pp. S260-S261 ◽  
Author(s):  
Josh Peterson ◽  
Carolyn Chlebek ◽  
Ashley Clough ◽  
Alexandra Wells ◽  
Eric H. Ledet

1831 ◽  
Vol 121 ◽  
pp. 17-66

In last April I had the honour of presenting to the Society a paper containing expressions for the variations of the elliptic constants in the theory of the motions of the planets. The stability of the solar system is established by means of these expressions, if the planets move in a space absolutely devoid of any resistance*, for it results from their form that however far the ap­proximation be carried, the eccentricity, the major axis, and the tangent of the inclination of the orbit to a fixed plane, contain only periodic inequalities, each of the three other constants, namely, the longitude of the node, the longitude of the perihelion, and the longitude of the epoch, contains a term which varies with the time, and hence the line of apsides and the line of nodes revolve continually in space. The stability of the system may therefore be inferred, which would not be the case if the eccentricity, the major axis, or the tangent of the inclination of the orbit to a fixed plane contained a term varying with the time, however slowly. The problem of the precession of the equinoxes admits of a similar solution; of the six constants which determine the position of the revolving body, and the axis of instantaneous rotation at any moment, three have only periodic inequalities, while each of the other three has a term which varies with the time. From the manner in which these constants enter into the results, the equilibrium of the system may be inferred to be stable, as in the former case. Of the constants in the latter problem, the mean angular velocity of rotation may be considered analogous to the mean motion of a planet, or its major axis ; the geographical longitude, and the cosine of the geographical latitude of the pole of the axis of instantaneous rotation, to the longitude of the perihelion and the eccentricity; the longitude of the first point of Aries and the obliquity of the ecliptic, to the longitude of the node and the inclination of the orbit to a fixed plane; and the longitude of a given line in the body revolving, passing through its centre of gravity, to the longitude of the epoch. By the stability of the system I mean that the pole of the axis of rotation has always nearly the same geographical latitude, and that the angular velocity of rotation, and the obliquity of the ecliptic vary within small limits, and periodically. These questions are considered in the paper I now have the honour of submitting to the Society. It remains to investigate the effect which is produced by the action of a resisting medium; in this case the latitude of the pole of the axis of rotation, the obliquity of the ecliptic, and the angular velocity of rotation might vary considerably, although slowly, and the climates undergo a con­siderable change.


Sign in / Sign up

Export Citation Format

Share Document