The role of prostaglandins in the pathogenesis of human disease: elucidation with stable isotopic methods

1978 ◽  
pp. 281-287 ◽  
Author(s):  
J. A. Oates ◽  
H. W. Seyberth ◽  
J. C. Frölich ◽  
B. J. Sweetman ◽  
J. T. Watson
2004 ◽  
Vol 35 (2) ◽  
pp. 119-137 ◽  
Author(s):  
S.D. Gurney ◽  
D.S.L. Lawrence

Seasonal variations in the stable isotopic composition of snow and meltwater were investigated in a sub-arctic, mountainous, but non-glacial, catchment at Okstindan in northern Norway based on analyses of δ18O and δD. Samples were collected during four field periods (August 1998; April 1999; June 1999 and August 1999) at three sites lying on an altitudinal transect (740–970 m a.s.l.). Snowpack data display an increase in the mean values of δ18O (increasing from a mean value of −13.51 to −11.49‰ between April and August), as well as a decrease in variability through the melt period. Comparison with a regional meteoric water line indicates that the slope of the δ18O–δD line for the snowpacks decreases over the same period, dropping from 7.49 to approximately 6.2.This change points to the role of evaporation in snowpack ablation and is confirmed by the vertical profile of deuterium excess. Snowpack seepage data, although limited, also suggest reduced values of δD, as might be associated with local evaporation during meltwater generation. In general, meltwaters were depleted in δ18O relative to the source snowpack at the peak of the melt (June), but later in the year (August) the difference between the two was not statistically significant. The diurnal pattern of isotopic composition indicates that the most depleted meltwaters coincide with the peak in temperature and, hence, meltwater production.


2001 ◽  
Vol 1 (3) ◽  
pp. 287-296 ◽  
Author(s):  
Yumi Yamamoto ◽  
Richard Gaynor
Keyword(s):  

Author(s):  
Jill Escher ◽  
Victor Corces ◽  
Isabelle Mansuy ◽  
Wei Yan

Haematologica ◽  
2018 ◽  
Vol 104 (6) ◽  
pp. e256-e259 ◽  
Author(s):  
Luca Aresu ◽  
Serena Ferraresso ◽  
Laura Marconato ◽  
Luciano Cascione ◽  
Sara Napoli ◽  
...  

2013 ◽  
Vol 23 (4) ◽  
pp. 949-967 ◽  
Author(s):  
Paul M. Smith ◽  
Joanna L. Elson ◽  
Laura C. Greaves ◽  
Saskia B. Wortmann ◽  
Richard J.T. Rodenburg ◽  
...  

2012 ◽  
Vol 21 (4) ◽  
pp. 699-713 ◽  
Author(s):  
V. Duranthon ◽  
N. Beaujean ◽  
M. Brunner ◽  
K. E. Odening ◽  
A. Navarrete Santos ◽  
...  

2021 ◽  
Author(s):  
Dina Marghani ◽  
Zhuo Ma ◽  
Anthony J. Centone ◽  
Weihua Huang ◽  
Meenakshi Malik ◽  
...  

Francisella tularensis is a Gram-negative bacterium that causes a fatal human disease known as tularemia. The Centers for Disease Control have classified F. tularensis as Category A Tier-1 Select Agent. The virulence mechanisms of Francisella are not entirely understood. Francisella possesses very few transcription regulators, and most of these regulate the expression of genes involved in intracellular survival and virulence. The F. tularensis genome sequence analysis reveals an AraC ( FTL_ 0689) transcriptional regulator homologous to the AraC/XylS family of transcriptional regulators. In Gram-negative bacteria, AraC activates genes required for L-arabinose utilization and catabolism. The role of the FTL_ 0689 regulator in F. tularensis is not known. In this study, we characterized the role of FTL_ 0689 in gene regulation of F. tularensis and investigated its contribution to intracellular survival and virulence. The results demonstrate that FTL_0689 in Francisella is not required for L-arabinose utilization. Instead, FTL_ 0689 specifically regulates the expression of the oxidative and global stress response, virulence, metabolism, and other key pathways genes required by Francisella when exposed to oxidative stress. The FTL_0689 mutant is attenuated for intramacrophage growth and virulence in mice. Based on the deletion mutant phenotype, FTL_0689 was termed osrR ( o xidative s tress r esponse r egulator). Altogether, this study elucidates the role of the osrR transcriptional regulator in tularemia pathogenesis. IMPORTANCE: The virulence mechanisms of category A select agent Francisella tularensis , the causative agent of a fatal human disease known as tularemia, remain largely undefined. The present study investigated the role of a transcriptional regulator and its overall contribution to the oxidative stress resistance of F. tularensis . The results provide an insight into a novel gene regulatory mechanism, especially when Francisella is exposed to oxidative stress conditions. Understanding such Francisella - specific regulatory mechanisms will identify potential targets for developing effective therapies and vaccines to prevent tularemia.


Sign in / Sign up

Export Citation Format

Share Document