Digital Filtering in Roughness Measurements

Author(s):  
A. A. Bruzzone ◽  
P. M. Lonardo
Author(s):  
H. Kinney ◽  
M.L. Occelli ◽  
S.A.C. Gould

For this study we have used a contact mode atomic force microscope (AFM) to study to topography of fluidized cracking catalysts (FCC), before and after contamination with 5% vanadium. We selected the AFM because of its ability to well characterize the surface roughness of materials down to the atomic level. It is believed that the cracking in the FCCs occurs mainly on the catalysts top 10-15 μm suggesting that the surface corrugation could play a key role in the FCCs microactivity properties. To test this hypothesis, we chose vanadium as a contaminate because this metal is capable of irreversibly destroying the FCC crystallinity as well as it microporous structure. In addition, we wanted to examine the extent to which steaming affects the vanadium contaminated FCC. Using the AFM, we measured the surface roughness of FCCs, before and after contamination and after steaming.We obtained our FCC (GRZ-1) from Davison. The FCC is generated so that it contains and estimated 35% rare earth exchaged zeolite Y, 50% kaolin and 15% binder.


2018 ◽  
Vol 1 (1) ◽  
pp. 5-12
Author(s):  
Adriana Milășan ◽  
◽  
Cristian Molder ◽  
Silviu Dumitrescu ◽  
◽  
...  

2003 ◽  
Vol 67 (1) ◽  
pp. 241 ◽  
Author(s):  
Michael L. Oelze ◽  
James M. Sabatier ◽  
Richard Raspet

1992 ◽  
Vol 21 (2) ◽  
pp. 31-36 ◽  
Author(s):  
A. G. Khadakkar ◽  
A. P. Thenmozhi ◽  
R. Narayanan

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1557
Author(s):  
Min Xu ◽  
Zhi Li ◽  
Michael Fahrbach ◽  
Erwin Peiner ◽  
Uwe Brand

High-speed tactile roughness measurements set high demand on the trackability of the stylus probe. Because of the features of low mass, low probing force, and high signal linearity, the piezoresistive silicon microprobe is a hopeful candidate for high-speed roughness measurements. This paper investigates the trackability of these microprobes through building a theoretical dynamic model, measuring their resonant response, and performing tip-flight experiments on surfaces with sharp variations. Two microprobes are investigated and compared: one with an integrated silicon tip and one with a diamond tip glued to the end of the cantilever. The result indicates that the microprobe with the silicon tip has high trackability for measurements up to traverse speeds of 10 mm/s, while the resonant response of the microprobe with diamond tip needs to be improved for the application in high-speed topography measurements.


Sign in / Sign up

Export Citation Format

Share Document