A Fast Growth Economy: Consolidating for Another Spurt

1992 ◽  
pp. 107-120
Author(s):  
Elliott Kulick ◽  
Dick Wilson
Keyword(s):  
2008 ◽  
Vol 10 (1) ◽  
pp. 1-11 ◽  
Author(s):  
M. V. Rodkin ◽  
V. F. Pisarenko

BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Cecilie Bækkedal Sonnenberg ◽  
Tim Kahlke ◽  
Peik Haugen

Abstract Background The genome of Vibrionaceae bacteria, which consists of two circular chromosomes, is replicated in a highly ordered fashion. In fast-growing bacteria, multifork replication results in higher gene copy numbers and increased expression of genes located close to the origin of replication of Chr 1 (ori1). This is believed to be a growth optimization strategy to satisfy the high demand of essential growth factors during fast growth. The relationship between ori1-proximate growth-related genes and gene expression during fast growth has been investigated by many researchers. However, it remains unclear which other gene categories that are present close to ori1 and if expression of all ori1-proximate genes is increased during fast growth, or if expression is selectively elevated for certain gene categories. Results We calculated the pangenome of all complete genomes from the Vibrionaceae family and mapped the four pangene categories, core, softcore, shell and cloud, to their chromosomal positions. This revealed that core and softcore genes were found heavily biased towards ori1, while shell genes were overrepresented at the opposite part of Chr 1 (i.e., close to ter1). RNA-seq of Aliivibrio salmonicida and Vibrio natriegens showed global gene expression patterns that consistently correlated with chromosomal distance to ori1. Despite a biased gene distribution pattern, all pangene categories contributed to a skewed expression pattern at fast-growing conditions, whereas at slow-growing conditions, softcore, shell and cloud genes were responsible for elevated expression. Conclusion The pangene categories were non-randomly organized on Chr 1, with an overrepresentation of core and softcore genes around ori1, and overrepresentation of shell and cloud genes around ter1. Furthermore, we mapped our gene distribution data on to the intracellular positioning of chromatin described for V. cholerae, and found that core/softcore and shell/cloud genes appear enriched at two spatially separated intracellular regions. Based on these observations, we hypothesize that there is a link between the genomic location of genes and their cellular placement.


Oecologia ◽  
2021 ◽  
Author(s):  
Juha Mikola ◽  
Katariina Koikkalainen ◽  
Mira Rasehorn ◽  
Tarja Silfver ◽  
Ulla Paaso ◽  
...  

AbstractFast-growing and slow-growing plant species are suggested to show integrated economics spectrums and the tradeoffs of fast growth are predicted to emerge as susceptibility to herbivory and resource competition. We tested if these predictions also hold for fast-growing and slow-growing genotypes within a silver birch, Betula pendula population. We exposed cloned saplings of 17 genotypes with slow, medium or fast height growth to reduced insect herbivory, using an insecticide, and to increasing resource competition, using naturally varying field plot grass cover. We measured shoot and root growth, ectomycorrhizal (EM) fungal production using ergosterol analysis and soil N transfer to leaves using 15N-labelled pulse of NH4+. We found that fast-growing genotypes grew on average 78% faster, produced 56% and 16% more leaf mass and ergosterol, and showed 78% higher leaf N uptake than slow-growing genotypes. The insecticide decreased leaf damage by 83% and increased shoot growth, leaf growth and leaf N uptake by 38%, 52% and 76%, without differences between the responses of fast-growing and slow-growing genotypes, whereas root mass decreased with increasing grass cover. Shoot and leaf growth of fast-growing genotypes decreased and EM fungal production of slow-growing genotypes increased with increasing grass cover. Our results suggest that fast growth is genotypically associated with higher allocation to EM fungi, better soil N capture and greater leaf production, and that the tradeoff of fast growth is sensitivity to competition, but not to insect herbivory. EM fungi may have a dual role: to support growth of fast-growing genotypes under low grass competition and to maintain growth of slow-growing genotypes under intensifying competition.


2018 ◽  
Vol 75 (3) ◽  
Author(s):  
Jerzy Szwagrzyk ◽  
Zbigniew Maciejewski ◽  
Ewa Maciejewska ◽  
Andrzej Tomski ◽  
Anna Gazda

2011 ◽  
Vol 4 (4) ◽  
pp. 419-426 ◽  
Author(s):  
Patrick J. Minogue ◽  
Stephen F. Enloe ◽  
Anna Osiecka ◽  
Dwight K. Lauer

AbstractKudzu is an invasive perennial climbing vine characterized by fast growth rates and tolerance to control measures. Repeated applications with high rates of 2,4-D plus picloram provide effective kudzu control, but picloram use is not permitted in certain states due to groundwater pollution concerns. Studies were conducted in Alabama and Florida to compare kudzu control with aminocyclopyrachlor, a new herbicide, to control provided by aminopyralid, clopyralid, metsulfuron methyl, and picloram plus 2,4-D, which are common treatments for kudzu management. Two annual applications of the same herbicide treatment were evaluated for effects on kudzu cover, kudzu volume index, and cover of other vegetation. Aminocyclopyrachlor at 140 to 280 g ae ha−1 (2 to 4 oz ae ac−1) was as effective as the standard 4.48 kg ae ha−1 (4 lb ae ac−1) 2,4-D amine plus 1.2 kg ae ha−1 picloram for kudzu control. There were no differences in kudzu control among the three rates of aminocyclopyrachlor tested. Colonization by graminoids, forbs, and Rubus spp. at 2 yr was greatest for herbicides providing the best kudzu control: aminocyclopyrachlor, and 2,4-D plus picloram. Herbicide treatments were more effective in controlling kudzu at the Alabama location, but repeated annual applications for 2 yr did not completely eliminate kudzu with any treatment at either site.


Sign in / Sign up

Export Citation Format

Share Document