scholarly journals Genotypic traits and tradeoffs of fast growth in silver birch, a pioneer tree

Oecologia ◽  
2021 ◽  
Author(s):  
Juha Mikola ◽  
Katariina Koikkalainen ◽  
Mira Rasehorn ◽  
Tarja Silfver ◽  
Ulla Paaso ◽  
...  

AbstractFast-growing and slow-growing plant species are suggested to show integrated economics spectrums and the tradeoffs of fast growth are predicted to emerge as susceptibility to herbivory and resource competition. We tested if these predictions also hold for fast-growing and slow-growing genotypes within a silver birch, Betula pendula population. We exposed cloned saplings of 17 genotypes with slow, medium or fast height growth to reduced insect herbivory, using an insecticide, and to increasing resource competition, using naturally varying field plot grass cover. We measured shoot and root growth, ectomycorrhizal (EM) fungal production using ergosterol analysis and soil N transfer to leaves using 15N-labelled pulse of NH4+. We found that fast-growing genotypes grew on average 78% faster, produced 56% and 16% more leaf mass and ergosterol, and showed 78% higher leaf N uptake than slow-growing genotypes. The insecticide decreased leaf damage by 83% and increased shoot growth, leaf growth and leaf N uptake by 38%, 52% and 76%, without differences between the responses of fast-growing and slow-growing genotypes, whereas root mass decreased with increasing grass cover. Shoot and leaf growth of fast-growing genotypes decreased and EM fungal production of slow-growing genotypes increased with increasing grass cover. Our results suggest that fast growth is genotypically associated with higher allocation to EM fungi, better soil N capture and greater leaf production, and that the tradeoff of fast growth is sensitivity to competition, but not to insect herbivory. EM fungi may have a dual role: to support growth of fast-growing genotypes under low grass competition and to maintain growth of slow-growing genotypes under intensifying competition.

2016 ◽  
Author(s):  
Stephane Bazot ◽  
Chantal Fresneau ◽  
Claire Damesin ◽  
Laure Barthes

Abstract. The origin of the N which contributes to the synthesis of N reserves of in situ forest trees in autumn, and to the growth of new organs the following spring, is currently poorly documented. To characterize the metabolism of various possible N sources (plant N and soil N), six distinct 20 year-old sessile oaks were 15N labelled by spraying 15NH415NO3: (i) on leaves in May, to label the N pool remobilized in the autumn for synthesis of reserves; (ii) on soil in the autumn, to label the N pool taken up from soil; (iii) on soil at the beginning of the following spring, to label the N pool taken up from soil in the spring. The partitioning of 15N in leaves, twigs, phloem, xylem, fine roots, rhizospheric soil and microbial biomass was followed during two growing seasons. Results showed a significant incorporation of 15N in the soil-tree system; more than 30 % of the administered 15N was recovered. Analysis of the partitioning clearly revealed that in autumn, roots’ N reserves were formed from foliage 15N (73 %) and to a lesser extent from soil 15N (27 %). The following spring, 15N used for the synthesis of new leaves came first from 15N stored during the previous autumn, mainly from 15N reserves formed from foliage (95 %). Thereafter, when leaves were fully expanded, 15N uptake from soil during the previous autumn and before budburst contributed to the formation of new leaves (60 %).


2016 ◽  
Vol 13 (11) ◽  
pp. 3475-3484 ◽  
Author(s):  
Stephane Bazot ◽  
Chantal Fresneau ◽  
Claire Damesin ◽  
Laure Barthes

Abstract. The origin of N which contributes to the synthesis of N reserves of in situ forest trees in autumn and to the growth of new organs the following spring is currently poorly documented. To characterize the metabolism of various possible N sources (plant N and soil N), six distinct 20-year-old sessile oaks were 15N labelled by spraying 15NH415NO3: (i) on leaves in May, to label the N pool remobilized in the autumn for synthesis of reserves, (ii) on soil in the autumn, to label the N pool taken up from soil and (iii) on soil at the beginning of the following spring, to label the N pool taken up from soil in the spring. The partitioning of 15N in leaves, twigs, phloem, xylem, fine roots, rhizospheric soil and microbial biomass was followed during two growing seasons. Results showed a significant incorporation of 15N into the soil–tree system; more than 30 % of the administered 15N was recovered. Analysis of the partitioning clearly revealed that in autumn, roots' N reserves were formed from foliage 15N (73 %) and to a lesser extent from soil 15N (27 %). The following spring, 15N used for the synthesis of new leaves came first from 15N stored during the previous autumn, mainly from 15N reserves formed from foliage (95 %). Thereafter, when leaves were fully expanded, 15N uptake from the soil during the previous autumn and before budburst contributed to the formation of new leaves (60 %).


2020 ◽  
Vol 7 (1) ◽  
pp. 190034
Author(s):  
Satomi Nishitani ◽  
Atsushi Ishida ◽  
Toshie Nakamura ◽  
Naoki Kachi

Nitrogen (N) uptake in response to its availability and effective N-use are important for determining plant fitness, as N is a major limiting resource and its availability changes both seasonally and annually. Storage organs such as bulbs are considered an adaptive trait with respect to plant N-use strategies. It is well known that N is remobilized from storage organs to satisfy the high demand for new growth that is not completely satisfied by external uptake alone. However, little is known about how this N absorbed during different seasons contributes to plant performance. By manipulating seasonal N availability in potted Lycoris radiata var. radiata (Amaryllidaceae), a winter-green perennial, we found that the N absorbed during different seasons had different effects on leaf growth and leaf N concentrations, effectively increasing the growth and survival of the plants. N absorbed during the summer (leafless period; N was thus stored in the bulb) enhanced plant growth by increasing leaf growth. Compared with the plants supplied with N during autumn (leaf flush period), the leafy plants also showed greater growth per unit leaf area despite the lower area-based photosynthetic capacity of the latter. By contrast, N absorbed during the autumn increased the leaf N concentration and thus the photosynthetic capacity, which was considered to enhance survival and growth of the plant during winter by reducing the potentially fatal risk caused by the absorption of photons under low temperature. Our findings have important implications for estimating plant responses to environmental changes. We predict that changes in seasonal N availability impact the performance of plants, even that of perennials that have large storage organs, via an altered relative investment of N into different functions.


2018 ◽  
Vol 19 (8) ◽  
pp. 2302 ◽  
Author(s):  
Sen Meng ◽  
Shu Wang ◽  
Jine Quan ◽  
Wanlong Su ◽  
Conglong Lian ◽  
...  

Poplars have evolved various strategies to optimize acclimation responses to environmental conditions. However, how poplars balance growth and nitrogen deficiency remains to be elucidated. In the present study, changes in root development, carbon and nitrogen physiology, and the transcript abundance of associated genes were investigated in slow-growing Populus simonii (Ps) and fast-growing Populus euramericana (Pe) saplings treated with low, medium, and high nitrogen supply. The slow-growing Ps showed a flourishing system, higher δ15N, accelerated C export, lower N uptake and assimilation, and less sensitive transcriptional regulation in response to low N supply. The slow-growing Ps also had greater resistance to N deficiency due to the transport of photosynthate to the roots and the stimulation of root development, which allows survival. To support its rapid metabolism and growth, compared with the slow-growing Ps, the fast-growing Pe showed greater root development, C/N uptake and assimilation capacity, and more responsive transcriptional regulation with greater N supply. These data suggest that poplars can differentially manage C/N metabolism and photosynthate allocation under different N supply conditions.


Agromet ◽  
2005 ◽  
Vol 19 (1) ◽  
pp. 11
Author(s):  
E. Eliyani ◽  
I Handoko ◽  
Yonny Koesmaryono

Teak (Tectona grandis L.f.) has been grown in Indonesia since the beginning of 14th century. Teak forests in Indonesia are found mainly on the island of Java, which cover an area of about 1 million ha (Indonesia Forest State Enterprise, 1992). Outside Java, the natural area of teak is Muna Island, Southeast Sulawesi (Simon, 1997). In some recent years, teak has been planted in some other islands of Indonesia from Sumatra to Papua mainly by private sectors and farmers. Some of these plantations are in areas that would have been considered marginal for teak growing two decades ago.<br />This phenomenon was encouraged by relatively new perception of teak planting as a commercially profitable venture, as well as by policy and legal changes. The rotation cycle of new high-intensity teak plantations is generally between 20 and 25 years which is three to four times shorter than for older low-intensity plantations (Nair & Souvannavong, 2000). Nowadays, the government does not control its harvesting and utilization for teak grown on private land.<br />However, information on growth response of this kind of teak to climate is very limited. The fast growth of this kind of teak needs a specific environment that could be different for the slow growing one. Its resistance to water deficit may not be as high as the slow growing one as its needs much water to cover its fast growth particularly in the early period of growth. This experiment was intended to analyze the effects of water deficit to the growth of young fast growing teak.


2015 ◽  
Vol 282 (1813) ◽  
pp. 20151053 ◽  
Author(s):  
Malin L. Pinsky ◽  
David Byler

Species around the world have suffered collapses, and a key question is why some populations are more vulnerable than others. Traditional conservation biology and evidence from terrestrial species suggest that slow-growing populations are most at risk, but interactions between climate variability and harvest dynamics may alter or even reverse this pattern. Here, we test this hypothesis globally. We use boosted regression trees to analyse the influences of harvesting, species traits and climate variability on the risk of collapse (decline below a fixed threshold) across 154 marine fish populations around the world. The most important factor explaining collapses was the magnitude of overfishing, while the duration of overfishing best explained long-term depletion. However, fast growth was the next most important risk factor. Fast-growing populations and those in variable environments were especially sensitive to overfishing, and the risk of collapse was more than tripled for fast-growing when compared with slow-growing species that experienced overfishing. We found little evidence that, in the absence of overfishing, climate variability or fast growth rates alone drove population collapse over the last six decades. Expanding efforts to rapidly adjust harvest pressure to account for climate-driven lows in productivity could help to avoid future collapses, particularly among fast-growing species.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 492g-492
Author(s):  
Oswaldo A. Rubio ◽  
Patrick H. Brown ◽  
Steven A. Weinbaum

Leaf N concentrations (% dry wt) appear relatively insensitive to high levels of applied fertilizer N (Weinbaum et al, HortTechnology 1992). This insensitivity may be attributable to growth dilation, lack of additional tree N uptake, a finite capacity of leaves to accumulate additional N or our inhability to resolve a limited increment. Our objective was to asses the relative accumulation of mobile forms of N (NO3, NH4 and amino acids) relative to a total N over a range of fertilizer N application rates in 3 year old, field-grown “Fantasia” nectarine trees. Between 0 and 136 Kg N/Ha/Yr we observed a linear relationship between N supply and all N fractions. Above 136 Kg N/Ha/Yr leaf concentrations of amino acids and total N remined constant, but NO3 and NH4 accumulation continued. These results suggest that leaf concentration of NO3 and NH4 are more sensitive indicators of soil N availability and tree N uptake than was total leaf N concentration.


2001 ◽  
Vol 126 (5) ◽  
pp. 644-648 ◽  
Author(s):  
F.J.A. Niederholzer ◽  
T.M. DeJong ◽  
J.-L. Saenz ◽  
T.T. Muraoka ◽  
S.A. Weinbaum

Marginally nitrogen (N)-deficient, field-grown peach trees [Prunus persica (L.) Batsch (Peach Group) 'O' Henry'] were used to evaluate seasonal patterns of tree N uptake, vegetative growth, and yield following fall or spring fertilization. Sequential tree excavations and determinations of tree biomass and N contents in Feb. and Aug. allowed estimation of N uptake by fall-fertilized trees between September 1993 and mid-February 1994. Total N uptake (by difference) by spring- fertilized trees as well as additional N uptake by fall-fertilized trees over the spring.summer period was also determined. In fall-fertilized trees, only 24% of tree N accumulation between September 1993 and August 1994 occurred during the fall/dormancy period. Spring- and fall-fertilized trees exhibited comparable vegetative growth, fruit size, and yield despite lower dormant tree N contents and tissue N concentrations in the spring-fertilized trees. Fifty percent of tree leaf N content was available for resorption from leaves for storage in woody tree parts. This amount (N at ~30.kghhhhhhha-1) was calculated to represent more than 80% of the N storage capacity in perennial tree parts of fertilized peach trees. Our data suggest that leaf N resorption, even without fall soil N application, can provide sufficient N from storage to initiate normal growth until plant-available soil N is accessed in spring.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Cecilie Bækkedal Sonnenberg ◽  
Tim Kahlke ◽  
Peik Haugen

Abstract Background The genome of Vibrionaceae bacteria, which consists of two circular chromosomes, is replicated in a highly ordered fashion. In fast-growing bacteria, multifork replication results in higher gene copy numbers and increased expression of genes located close to the origin of replication of Chr 1 (ori1). This is believed to be a growth optimization strategy to satisfy the high demand of essential growth factors during fast growth. The relationship between ori1-proximate growth-related genes and gene expression during fast growth has been investigated by many researchers. However, it remains unclear which other gene categories that are present close to ori1 and if expression of all ori1-proximate genes is increased during fast growth, or if expression is selectively elevated for certain gene categories. Results We calculated the pangenome of all complete genomes from the Vibrionaceae family and mapped the four pangene categories, core, softcore, shell and cloud, to their chromosomal positions. This revealed that core and softcore genes were found heavily biased towards ori1, while shell genes were overrepresented at the opposite part of Chr 1 (i.e., close to ter1). RNA-seq of Aliivibrio salmonicida and Vibrio natriegens showed global gene expression patterns that consistently correlated with chromosomal distance to ori1. Despite a biased gene distribution pattern, all pangene categories contributed to a skewed expression pattern at fast-growing conditions, whereas at slow-growing conditions, softcore, shell and cloud genes were responsible for elevated expression. Conclusion The pangene categories were non-randomly organized on Chr 1, with an overrepresentation of core and softcore genes around ori1, and overrepresentation of shell and cloud genes around ter1. Furthermore, we mapped our gene distribution data on to the intracellular positioning of chromatin described for V. cholerae, and found that core/softcore and shell/cloud genes appear enriched at two spatially separated intracellular regions. Based on these observations, we hypothesize that there is a link between the genomic location of genes and their cellular placement.


Sign in / Sign up

Export Citation Format

Share Document