High Efficiency, High Precision Grinding of Parallel Surfaces

Author(s):  
Hans R. Vogt
2019 ◽  
Vol 13 (6) ◽  
pp. 721-721 ◽  
Author(s):  
Hirofumi Suzuki ◽  
Kazuhito Ohashi

The demand for high-precision and high-efficiency machining of hard ceramics such as silicon carbide (SiC) for semiconductors and hardened steel for molding dies has significantly increased for power devices in automobiles, optical devices, and medical devices. Certain types of hard metals can be machined by deterministic precision-cutting processes. However, hard and brittle ceramics, hardened steel for molds, or semiconductor materials have to be machined by precision abrasive technologies such as grinding, polishing, and ultrasonic vibration technologies with diamond super abrasives. The machining of high-precision components and their molds/dies by abrasive processes is much more difficult owing to their complex and nondeterministic nature as well as their complex textured surface. Furthermore, high-energy processes with UV lasers and IR lasers, and ultrasonic vibration can be used to assist abrasive technologies for greater precision and efficiency. In this sense, precision grinding and polishing processes are primarily used to generate high-quality and functional components usually made of hard and brittle materials. The surface quality achieved by precision grinding and polishing processes becomes more important to reduce processing time and costs. This special issue features seven research papers on the most recent advances in precision abrasive technologies for hard materials. These papers cover various abrasive machining processes such as grinding, polishing, ultrasonic-assisted grinding, and laser-assisted technologies. We deeply appreciate the careful work of all the authors and thank the reviewers for their incisive efforts. We also hope that this special issue will encourage further research on abrasive technologies.


2001 ◽  
Vol 53 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Seung Hwan Chang ◽  
Po Jin Kim ◽  
Dai Gil Lee ◽  
Jin Kyung Choi

Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 398
Author(s):  
Yaroslav S. Derbenev ◽  
Yury N. Filatov ◽  
Anatoliy M. Kondratenko ◽  
Mikhail A. Kondratenko ◽  
Vasiliy S. Morozov

We present a review of the possibilities to conduct experiments of high efficiency in the nuclear and high energy physics with spin-polarized beams in a collider complex, configuration of which includes Siberian snakes or figure-8 collider ring. Special attention is given to the recently elicited advantageous possibility to conduct high precision experiments in a regime of the spin transparency (ST) when the design global spin tune is close to zero. In this regime, the polarization control is realized by use of spin navigators (SN), which are compact special insertions of magnets dedicated to a high flexibility spin manipulation including frequent spin flips.


2012 ◽  
Vol 503-504 ◽  
pp. 764-767 ◽  
Author(s):  
Lin Zhu ◽  
Lin Pan

The super-thin rod cylindrical grinding is a problem in the machining, super-thin rod with large slenderness ratio, poor rigidity, large roundness error after grinding, and with low processing efficiency. This study uses cylindrical honing processing super-thin rod parts, and designing the super-thin rod cylindrical honing head, carrying on a honing test. The results show that the super-thin rod cylindrical coarse honing capacity reach up to 0.002mm/double stroke(length 1698mm), surface roughness reach up to Ra 0.8 ~ 0.025μm after honing, roundness error reach up to 2μm. It fully shows that super-thin rod cylindrical honing technology has high precision, low surface roughness, flexible production processing and high efficiency.


2019 ◽  
Vol 75 (6) ◽  
pp. 833-841 ◽  
Author(s):  
Benjamin Heacock ◽  
Robert Haun ◽  
Katsuya Hirota ◽  
Takuya Hosobata ◽  
Michael G. Huber ◽  
...  

The construction is described of a monolithic thick-crystal perfect silicon neutron interferometer using an ultra-high-precision grinding technique and a combination of annealing and chemical etching that differs from the construction of prior neutron interferometers. The interferometer is the second to have been annealed after machining and the first to be annealed prior to chemical etching. Monitoring the interference signal at each post-fabrication step provides a measurement of subsurface damage and its alleviation. In this case, the strain caused by subsurface damage manifests itself as a spatially varying angular misalignment between the two relevant volumes of the crystal and is reduced from ∼10−5 rad to ∼10−9 rad by way of annealing and chemical etching.


Sign in / Sign up

Export Citation Format

Share Document