Cellulose Biosynthesis in Forest Trees

Author(s):  
Kristina Blomqvist ◽  
Soraya Djerbi ◽  
Henrik Aspeborg ◽  
Tuula T. Teeri
2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Samaneh Sadat Maleki ◽  
Kourosh Mohammadi ◽  
Kong-shu Ji

Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranchedβ(1-4) D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC) from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA) proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the KORRIGAN, sucrose synthase, cytoskeletal components, and COBRA-like proteins have been involved in cellulose biosynthesis. Understanding the mechanisms of cellulose biosynthesis is of great importance not only for improving wood production in economically important forest trees to mankind but also for plant development. This review article covers the current knowledge about the cellulose biosynthesis-related gene family.


1880 ◽  
Vol 9 (234supp) ◽  
pp. 3730-3730
Author(s):  
Charles S. Sargent
Keyword(s):  

2017 ◽  
Vol 23 (2) ◽  
Author(s):  
S. A. FIRDOUSI

During the survey of the forest fungal disease, of Jalgaon district, two severe leaf spot diseases on Lannae coromandelica and ( Ougenia dalbergioides (Papilionaceae) were observed in Jalgaon, forest during July to September 2016-17. The casual organism was identified as Stigmina lanneae and Phomopsis sp. respectively1-4,7. These are first report from Jalgaon and Maharashtra state.


2005 ◽  
Vol 156 (6) ◽  
pp. 207-210 ◽  
Author(s):  
Claudio Defila

Numerous publications are devoted to plant phenological trends of all trees, shrubs and herbs. In this work we focus on trees of the forest. We take into account the spring season (leaf and needle development) as well as the autumn (colour turning and shedding of leaves) for larch, spruce and beech, and,owing to the lack of further autumn phases, the horse chestnut. The proportion of significant trends is variable, depending on the phenological phase. The strongest trend to early arrival in spring was measured for needles of the larch for the period between 1951 and 2000 with over 20 days. The leaves of the horse chestnut show the earliest trend to turn colour in autumn. Beech leaves have also changed colour somewhat earlier over the past 50 years. The trend for shedding leaves, on the other hand, is slightly later. Regional differences were examined for the growth of needles in the larch where the weakest trends towards early growth are found in Canton Jura and the strongest on the southern side of the Alps. The warming of the climate strongly influences phenological arrival times. Trees in the forest react to this to in a similar way to other plants that have been observed (other trees, shrubs and herbs).


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Veronica Giourieva ◽  
Emmanuel Panteris

Abstract Background Cortical microtubules regulate cell expansion by determining cellulose microfibril orientation in the root apex of Arabidopsis thaliana. While the regulation of cell wall properties by cortical microtubules is well studied, the data on the influence of cell wall to cortical microtubule organization and stability remain scarce. Studies on cellulose biosynthesis mutants revealed that cortical microtubules depend on Cellulose Synthase A (CESA) function and/or cell expansion. Furthermore, it has been reported that cortical microtubules in cellulose-deficient mutants are hypersensitive to oryzalin. In this work, the persistence of cortical microtubules against anti-microtubule treatment was thoroughly studied in the roots of several cesa mutants, namely thanatos, mre1, any1, prc1-1 and rsw1, and the Cellulose Synthase Interacting 1 protein (csi1) mutant pom2-4. In addition, various treatments with drugs affecting cell expansion were performed on wild-type roots. Whole mount tubulin immunolabeling was applied in the above roots and observations were performed by confocal microscopy. Results Cortical microtubules in all mutants showed statistically significant increased persistence against anti-microtubule drugs, compared to those of the wild-type. Furthermore, to examine if the enhanced stability of cortical microtubules was due to reduced cellulose biosynthesis or to suppression of cell expansion, treatments of wild-type roots with 2,6-dichlorobenzonitrile (DCB) and Congo red were performed. After these treatments, cortical microtubules appeared more resistant to oryzalin, than in the control. Conclusions According to these findings, it may be concluded that inhibition of cell expansion, irrespective of the cause, results in increased microtubule stability in A. thaliana root. In addition, cell expansion does not only rely on cortical microtubule orientation but also plays a regulatory role in microtubule dynamics, as well. Various hypotheses may explain the increased cortical microtubule stability under decreased cell expansion such as the role of cell wall sensors and the presence of less dynamic cortical microtubules.


Sign in / Sign up

Export Citation Format

Share Document