Late Time Behavior of Non Spherical Collapse of Scalar Field Dark Matter

Author(s):  
Argelia Bernal ◽  
F. Siddhartha Guzmán
2006 ◽  
Vol 21 (15) ◽  
pp. 1241-1248 ◽  
Author(s):  
M. ARIK ◽  
M. C. ÇALIK

By using a linearized non-vacuum late time solution in Brans–Dicke cosmology, we account for the 75% dark energy contribution but not for approximately 23% dark matter contribution to the present day energy density of the universe.


2005 ◽  
Vol 201 ◽  
pp. 260-263
Author(s):  
Varun. Sahni

I describe a new class of quintessence+CDM models in which late time scalar field oscillations can give rise to both quintessence and cold dark matter. Additionally, a versatile ansatz for the luminosity distance is used to reconstruct the quintessence equation of state in amodel independentmanner from observations of high redshift supernovae.


2016 ◽  
Vol 2016 ◽  
pp. 1-17
Author(s):  
Emre Dil

In this paper, we propose a new approach to study the dark sector of the universe by considering the dark energy as an emergingq-deformed bosonic scalar field which is not only interacting with the dark matter, but also nonminimally coupled to gravity, in the framework of standard Einsteinian gravity. In order to analyze the dynamic of the system, we first give the quantum field theoretical description of theq-deformed scalar field dark energy and then construct the action and the dynamical structure of this interacting and nonminimally coupled dark sector. As a second issue, we perform the phase-space analysis of the model to check the reliability of our proposal by searching the stable attractor solutions implying the late-time accelerating expansion phase of the universe.


Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 463 ◽  
Author(s):  
M. Zubair ◽  
Muhammad Zeeshan ◽  
Syed Hasan ◽  
V. Oikonomou

We study the cosmic evolution of non-minimally coupled f ( R , T ) gravity in the presence of matter fluids consisting of collisional self-interacting dark matter and radiation. We study the cosmic evolution in the presence of collisional matter, and we compare the results with those corresponding to non-collisional matter and the Λ -cold-dark-matter ( Λ CDM) model. Particularly, for a flat Friedmann–Lema i ^ tre–Robertson–Walker Universe, we study two non-minimally coupled f ( R , T ) gravity models and we focus our study on the late-time dynamical evolution of the model. Our study is focused on the late-time behavior of the effective equation of the state parameter ω e f f and of the deceleration parameter q as functions of the redshift for a Universe containing collisional and non-collisional dark matter fluids, and we compare both models with the Λ CDM model. As we demonstrate, the resulting picture is well accommodated to the latest observational data on the basis of physical parameters.


2015 ◽  
Vol 24 (05) ◽  
pp. 1530014 ◽  
Author(s):  
Md. Wali Hossain ◽  
R. Myrzakulov ◽  
M. Sami ◽  
Emmanuel N. Saridakis

This pedagogical review is devoted to quintessential inflation, which refers to unification of inflation and dark energy using a single scalar field. We present a brief but concise description of the concepts needed to join the two ends, which include discussion on scalar field dynamic, conformal coupling, instant preheating and relic gravitational waves. Models of quintessential inflation broadly fall into two classes, depending upon the early and late time behavior of the field potential. In the first type we include models in which the field potential is steep for most of the history of the universe but turn shallow at late times, whereas in the second type the potential is shallow at early times followed by a steep behavior thereafter. In models of the first category inflation can be realized by invoking high-energy brane-induced damping, which is needed to facilitate slow roll along a steep potential. In models of second type one may invoke a nonminimal coupling of the scalar field with massive neutrino matter, which might induce a minimum in the potential at late times as neutrinos turn nonrelativistic. In this category we review a class of models with noncanonical kinetic term in the Lagrangian, which can comply with recent B mode polarization measurements. The scenario under consideration is distinguished by the presence of a kinetic phase, which precedes the radiative regime, giving rise to blue spectrum of gravity waves generated during inflation. We highlight the generic features of quintessential inflation and also discuss on issues related to Lyth bound.


2017 ◽  
Vol 27 (01) ◽  
pp. 1750177
Author(s):  
Emre Dil ◽  
Erdinç Kolay

We propose a new model for studying the dark constituents of the universe by regarding the dark energy as a [Formula: see text]-deformed scalar field interacting with the dark matter, in the framework of standard general relativity. Here we assume that the number of particles in each mode of the [Formula: see text]-deformed scalar field varies in time by the particle creation and annihilation. We first describe the [Formula: see text]-deformed scalar field dark energy quantum-field theoretically, then construct the action and the dynamical structure of these interacting dark sectors, in order to study the dynamics of the model. We perform the phase space analysis of the model to confirm and interpret our proposal by searching the stable attractor solutions implying the late-time accelerating phase of the universe. We then obtain the result that when interaction and equation-of-state parameter of the dark matter evolve from the present day values into a particular value, the dark energy turns out to be a [Formula: see text]-deformed scalar field.


2009 ◽  
Vol 2009 ◽  
pp. 1-14 ◽  
Author(s):  
Abhik Kumar Sanyal

Smooth double crossing of the phantom divide linewΛ=−1has been found possible with a single minimally coupled scalar field for the most simple form of generalizedk-essence cosmological model, in the presence of background cold dark matter. Such crossing is a sufficiently late time transient phenomenon and does not have any pathological behaviour.


2016 ◽  
Vol 2016 ◽  
pp. 1-20 ◽  
Author(s):  
Emre Dil

We propose a novel coupled dark energy model which is assumed to occur as aq-deformed scalar field and investigate whether it will provide an expanding universe phase. We consider theq-deformed dark energy as coupled to dark matter inhomogeneities. We perform the phase-space analysis of the model by numerical methods and find the late-time accelerated attractor solutions. The attractor solutions imply that the coupledq-deformed dark energy model is consistent with the conventional dark energy models satisfying an acceleration phase of universe. At the end, we compare the cosmological parameters of deformed and standard dark energy models and interpret the implications.


Sign in / Sign up

Export Citation Format

Share Document