Airplane Basic Equations of Motion and Open-Loop Dynamics

Author(s):  
I. A. Raptis ◽  
K. P. Valavanis
2003 ◽  
Vol 46 (02) ◽  
pp. 92-100
Author(s):  
Fotis A. Papoulias ◽  
Panos E. Kapasakis

The problem of ship steering in canals and confined waters is analyzed with emphasis on stability and bifurcation analysis. The classical maneuvering equations of motion augmented with a model for ship-canal interaction are used to model open-loop dynamics. Coupling of a control law and a guidance scheme with appropriate time lags is employed to model the essential dynamics of a helmsman. The complete system is analyzed using both linear and nonlinear techniques in order to assess its stability under finite disturbances. The results indicate that for certain regions of parameters, limit cycle oscillations may develop that could compromise system stability and safety of operations.


2014 ◽  
Vol 555 ◽  
pp. 3-10 ◽  
Author(s):  
Afshin Banazadeh ◽  
Neda Taymourtash

The main objective of this paper is to present the modeling and simulation of open loop dynamics of a rigid body insect-like flapping wing. The most important aerodynamic mechanisms that explain the nature of the flapping flight, including added mass, rotational lift and delayed stall, are modeled. Wing flapping kinematics is described using appropriate reference frames and three degree of freedom for each wing with respect to the insect body. In order to simulate nonlinear differential equations of motion, 6DOF model of the insect-like flapping wing is developed, followed by an evaluation of the simulation results in hover condition.


2005 ◽  
Vol 47 (1) ◽  
pp. 65-74 ◽  
Author(s):  
K. Fakhar ◽  
Zu-Chi Chen ◽  
Xiaoda Ji

AbstractThe machinery of Lie theory (groups and algebras) is applied to the unsteady equations of motion of rotating fluid. A special-function type solution for the steady state is derived. It is then shown how the solution generates an infinite number of time-dependent solutions via three arbitrary functions of time. This algebraic structure also provides the mechanism to search for other solutions since its character is inferred from the basic equations.


Author(s):  
Jiechi Xu ◽  
Joseph R. Baumgarten

Abstract The application of the systematic procedures in the derivation of the equations of motion proposed in Part I of this work is demonstrated and implemented in detail. The equations of motion for each subsystem are derived individually and are assembled under the concept of compatibility between the local kinematic properties of the elastic degrees of freedom of those connected elastic members. The specific structure under consideration is characterized as an open loop system with spherical unconstrained chains being capable of rotating about a Hooke’s or universal joint. The rigid body motion, due to two unknown rotations, and the elastic degrees of freedom are mutually coupled and influence each other. The traditional motion superposition approach is no longer applicable herein. Numerical examples for several cases are presented. These simulations are compared with the experimental data and good agreement is indicated.


1999 ◽  
Author(s):  
S. Park ◽  
J. W. Lee ◽  
Y. Youm ◽  
W. K. Chung

Abstract In this paper, the mathematical model of a Bernoulli-Euler cantilever beam fixed on a moving cart and carrying an intermediate lumped mass is derived. The equations of motion of the beam-mass-cart system is analyzed utilizing unconstrained modal analysis, and a unified frequency equation which can be generally applied to this kind of system is obtained. The change of natural frequencies and mode shapes with respect to the change of the mass ratios of the beam, the lumped mass and the cart and to the position of the lumped mass is investigated. The open-loop responses of the system by arbitrary forcing function are also obtained through numerical simulations.


Author(s):  
Fadi A. Ghaith

In the present work, a Bernoulli – Euler beam fixed on a moving cart and carrying lumped tip mass subjected to external periodic force is considered. Such a model could describe the motion of structures like forklift vehicles or ladder cars that carry heavy loads and military airplane wings with storage loads on their span. The nonlinear equations of motion which describe the global motion as well as the vibration motion were derived using Lagrangian approach under the inextensibility condition. In order to investigate the influence of the axial movement of the cart on the response of the system, unconstrained modal analysis has been carried out, and accurate mode shapes of the beam deflection were obtained. The assumed mode method was utilized for approximating the beam elastic deformation based on the single unconstrained mode shapes. Numerical simulation has been carried out to estimate the open-loop response of the nonlinear beam-mass-cart model as well as for the simplified linear model under the influence of the periodic excitation force. Also a comparison study between the responses of the linear and nonlinear models was established. It was shown that the maximum values of the beam tip deflection estimated from the nonlinear model are lower than the corresponding values obtained via the linear model, which reveals the importance of considering nonlinear hardening term in formulating the equations of motion for such system in order to come with more accurate and reliable model.


Author(s):  
Thomas Pumho¨ssel ◽  
Horst Ecker

In several fields, e.g. aerospace applications, robotics or the bladings of turbomachinery, the active damping of vibrations of slender beams which are subject to free bending vibrations becomes more and more important. In this contribution a slender cantilever beam loaded with a controlled force at its tip, which always points to the clamping point of the beam, is treated. The equations of motion are obtained using the Bernoulli-Euler beam theory and d’Alemberts principle. To introduce artificial damping to the lateral vibrations of the beam, the force at the tip of the beam has to be controlled in a proper way. Two different methods are compared. One concept is the closed-loop control of the force. In this case a nonlinear feedback control law is used, based on axial velocity feedback of the tip of the beam and a state-dependent amplification. By contrast, the concept of open-loop parametric control works without any feedback of the actual vibrations of the mechanical structure. This approach applies the force as harmonic function of time with constant amplitude and frequency. Numerical results are carried out to compare and to demonstrate the effectiveness of both methods.


Author(s):  
Yunn-Lin Hwang

The main objective of this paper is to develop a recursive method for the dynamic analysis of open-loop flexible multibody systems. The nonlinear generalized Newton-Euler equations are used for flexible bodies that undergo large translational and rotational displacements. These equations are formulated in terms of a set of time invariant scalars, vectors and matrices that depend on the spatial coordinates as well as the assumed displacement fields, and these time invariant quantities represent the dynamic coupling between the rigid body motion and elastic deformation. The method to solve for the equations of motion for open-loop systems consisting of interconnected rigid and flexible bodies is presented in this investigation. This method applies recursive method with the generalized Newton-Euler method for flexible bodies to obtain a large, loosely coupled system equations of motion. The solution techniques used to solve for the system equations of motion can be more efficiently implemented in the vector or digital computer systems. The algorithms presented in this investigation are illustrated by using cylindrical joints that can be easily extended to revolute, slider and rigid joints. The basic recursive formulations developed in this paper are demonstrated by two numerical examples.


Sign in / Sign up

Export Citation Format

Share Document