New Generation of High Resolution Ultrasonic Imaging Technique for Advanced Material Characterization: Review

2008 ◽  
pp. 163-172
Author(s):  
R.Gr. Maev
Author(s):  
Z.M. Benenson ◽  
A.B. Elizarov ◽  
T.V. Yakovieva ◽  
W.D. O'Brien

Author(s):  
N. D. Browning ◽  
M. M. McGibbon ◽  
M. F. Chisholm ◽  
S. J. Pennycook

The recent development of the Z-contrast imaging technique for the VG HB501 UX dedicated STEM, has added a high-resolution imaging facility to a microscope used mainly for microanalysis. This imaging technique not only provides a high-resolution reference image, but as it can be performed simultaneously with electron energy loss spectroscopy (EELS), can be used to position the electron probe at the atomic scale. The spatial resolution of both the image and the energy loss spectrum can be identical, and in principle limited only by the 2.2 Å probe size of the microscope. There now exists, therefore, the possibility to perform chemical analysis of materials on the scale of single atomic columns or planes.In order to achieve atomic resolution energy loss spectroscopy, the range over which a fast electron can cause a particular excitation event, must be less than the interatomic spacing. This range is described classically by the impact parameter, b, which ranges from ~10 Å for the low loss region of the spectrum to <1Å for the core losses.


Author(s):  
John L. Hutchison

Over the past five years or so the development of a new generation of high resolution electron microscopes operating routinely in the 300-400 kilovolt range has produced a dramatic increase in resolution, to around 1.6 Å for “structure resolution” and approaching 1.2 Å for information limits. With a large number of such instruments now in operation it is timely to assess their impact in the various areas of materials science where they are now being used. Are they falling short of the early expectations? Generally, the manufacturers’ claims regarding resolution are being met, but one unexpected factor which has emerged is the extreme sensitivity of these instruments to both floor-borne and acoustic vibrations. Successful measures to counteract these disturbances may require the use of special anti-vibration blocks, or even simple oil-filled dampers together with springs, with heavy curtaining around the microscope room to reduce noise levels. In assessing performance levels, optical diffraction analysis is becoming the accepted method, with rotational averaging useful for obtaining a good measure of information limits. It is worth noting here that microscope alignment becomes very critical for the highest resolution.In attempting an appraisal of the contributions of intermediate voltage HREMs to materials science we will outline a few of the areas where they are most widely used. These include semiconductors, oxides, and small metal particles, in addition to metals and minerals.


2021 ◽  
Author(s):  
Eva Chatzinikolaou ◽  
Kleoniki Keklikoglou

Micro-computed tomography (micro-CT) is a high-resolution 3D-imaging technique which is now increasingly applied in biological studies focusing on taxonomy and functional morphology. The creation of virtual representations of specimens can increase availability of otherwise underexploited and inaccessible samples. This protocol aims to standardise micro-CT scanning procedures for embryos and juveniles of the marine gastropod species Hexaplex trunculus.


2004 ◽  
Vol 8 (4) ◽  
pp. 6
Author(s):  
N. Khan ◽  
H.M Modishi ◽  
L.D.R. Tsatsi ◽  
A. Kahloon ◽  
A. Segone

Radiographic retrograde urethrography (RUG) has traditionally been the preferred technique used by urologists to image the anterior urethra. Since originally described by McAninch et aL in 1988, ultrasonic imaging of the urethra has evolved into a powerful and clinically useful tool for the accurate delineation of urethral pathology. However the posterior urethra cannot be assessed reliably using this technique. Sonourethrography has proved to be more accurate than conventional radiographic urethrography in measuring stricture length throughout the anterior urethra. The objective and purpose of this study was to assess the efficacy of sonourethrography in the evaluation of anterior urethral strictures and also to explain its many advantages over traditional imaging technique.


1983 ◽  
Vol 77 (9) ◽  
pp. 446-449 ◽  
Author(s):  
Randolph D. Easton ◽  
Richard M. Jackson

This report describes the results of a pilot study undertaken to assess systematically the usability of the Trisensor in near space, object localization tasks. In general, findings support the contention that the high resolution, center channel reduces the degree of angle error when reaching for targets in near space. It was also found that the degree of angle error associated with the binaural side channels could be reduced if targets were moved from the periphery into place during localization.


Sign in / Sign up

Export Citation Format

Share Document